问题描述
我正在尝试使用 Google Colab 中的IMDb数据集实施二进制分类示例.我以前已经实现了此模型.但是,当我几天后尝试再次执行此操作时,它返回了一个值错误:对于load_data()函数,当allow_pickle = False时,无法加载对象数组.
I'm trying to implement the binary classification example using the IMDb dataset in Google Colab. I have implemented this model before. But when I tried to do it again after a few days, it returned a value error:'Object arrays cannot be loaded when allow_pickle=False' for the load_data() function.
我已经尝试解决此问题,请参考类似问题的现有答案:但是事实证明,仅添加allow_pickle参数是不够的.
I have already tried solving this, referring to an existing answer for a similar problem: How to fix 'Object arrays cannot be loaded when allow_pickle=False' in the sketch_rnn algorithmBut turns out that just adding an allow_pickle argument isn't sufficient.
我的代码:
from keras.datasets import imdb
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
错误:
ValueError Traceback (most recent call last)
<ipython-input-1-2ab3902db485> in <module>()
1 from keras.datasets import imdb
----> 2 (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
2 frames
/usr/local/lib/python3.6/dist-packages/keras/datasets/imdb.py in load_data(path, num_words, skip_top, maxlen, seed, start_char, oov_char, index_from, **kwargs)
57 file_hash='599dadb1135973df5b59232a0e9a887c')
58 with np.load(path) as f:
---> 59 x_train, labels_train = f['x_train'], f['y_train']
60 x_test, labels_test = f['x_test'], f['y_test']
61
/usr/local/lib/python3.6/dist-packages/numpy/lib/npyio.py in __getitem__(self, key)
260 return format.read_array(bytes,
261 allow_pickle=self.allow_pickle,
--> 262 pickle_kwargs=self.pickle_kwargs)
263 else:
264 return self.zip.read(key)
/usr/local/lib/python3.6/dist-packages/numpy/lib/format.py in read_array(fp, allow_pickle, pickle_kwargs)
690 # The array contained Python objects. We need to unpickle the data.
691 if not allow_pickle:
--> 692 raise ValueError("Object arrays cannot be loaded when "
693 "allow_pickle=False")
694 if pickle_kwargs is None:
ValueError: Object arrays cannot be loaded when allow_pickle=False
推荐答案
这是一个强制imdb.load_data
允许在笔记本中通过腌制代替以下行的技巧:
Here's a trick to force imdb.load_data
to allow pickle by, in your notebook, replacing this line:
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
由此:
import numpy as np
# save np.load
np_load_old = np.load
# modify the default parameters of np.load
np.load = lambda *a,**k: np_load_old(*a, allow_pickle=True, **k)
# call load_data with allow_pickle implicitly set to true
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
# restore np.load for future normal usage
np.load = np_load_old
这篇关于如何修复imdb.load_data()函数的"allow_pickle = False时无法加载对象数组"?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!