本文介绍了LBP本地二进制模式,用于在正面进行嘴部检测的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

有人可以指导我找到用于嘴部检测的lbp级联分类器吗?我在寻找,但没有找到任何东西.我只找到了haar文件,我想知道某人是否具有lbp分类器. Haar分类器非常慢,使用haar在我的应用中降低了10 fps.谢谢你们.

There is someone who can direct me to find a lbp cascade classifier for mouth detection?I looked for but i didn't found anything. I found only haar files, i want to know if someone have a lbp classifier. Haar classifiers are so slow, decrease of 10 fps in my app using haar. Thank you guys.

推荐答案

@Sandeep,您好,抱歉,我更改了我的S.O.个人资料,所以我还没有看到您的问题.反正是!我上次使用分类器进行管理.我可以给你个好地址.我与haar级联分类器一起工作,过程非常简单,但是您需要大量的训练数据!
基本上,您将需要一组正样本(包括要扫描的对象)和一组负样本(不包含要扫描的对象).

Hi @Sandeep sorry i changed my S.O. profile so i haven't seen your question. Anyway yes! I managed with classifiers in last times. I can give you a good address.I worked with haar cascade-classifiers the process is very simple but you need a lot of training data!
Basically you'll need a set of positive samples(that includes the Object that you want to scan) and a set negative samples(that NOT contains the object that you want to scan).

示例:假设您要使用opencv和haar级联分类器扫描坑洼:
您需要一组包含坑洼(正样本)的街道图像和一组不包含坑洼(负样本)的街道图像.

EXAMPLE:Supposing you want to scan potholes using opencv and an haar cascade-classifier:
you'll need a set of images of streets that contains potholes(positive samples) and a set of image of streets that NOT contains potholes(negative samples).

我给您留下了非常有用的链接: http://www.academia.edu/9149928/A_complete_guide_to_train_a_cascade_classifier_filter

I leave you a link that helped me so much: http://www.academia.edu/9149928/A_complete_guide_to_train_a_cascade_classifier_filter

此示例使用GitHub项目,这里是链接: https://github.com/sauhaardac/Haar训练

This example uses a GitHub project i here's the link: https://github.com/sauhaardac/Haar-Training

希望能有所帮助,再见:D

Hope to be helpful, bye :D

这篇关于LBP本地二进制模式,用于在正面进行嘴部检测的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

05-17 11:44