本文介绍了EmguCV SURF - 确定匹配的点对的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我目前正在修改EmguCV(Ver 3.0.0.2157)SurfFeature示例()。

I'm currently modifying EmguCV's (Ver 3.0.0.2157) SurfFeature example (Seen here).

我正在尝试确定匹配的点对数量以便计算输入图像之间的相似性百分比。

I'm trying to determine the amount of matched pairs of points in order to calculate a percentage of similarity between the inputted images.

据我所知,此信息存储在掩码变量中,但我不知道如何访问它?

From what I understand, this information is stored in the mask variable, but I don't know how to access it?

(在,但引用的示例源代码使用的是旧版本的EmguCV)

(This question has been asked before here, but the example source code being referenced is using an older version of EmguCV)

提前致谢!

推荐答案

确定匹配

    public static Image<Bgr, Byte> Draw(Image<Gray, Byte> modelImage, Image<Gray, byte> observedImage, out long matchTime, out int nonofZeroCount)
    {
        int returnValue = 0;

        Stopwatch watch;
        HomographyMatrix homography = null;

        SURFDetector surfCPU = new SURFDetector(500, false);
        VectorOfKeyPoint modelKeyPoints;
        VectorOfKeyPoint observedKeyPoints;
        Matrix<int> indices;

        Matrix<byte> mask;
        int k = 2;
        double uniquenessThreshold = 0.8;

        if (GpuInvoke.HasCuda)
        {
            GpuSURFDetector surfGPU = new GpuSURFDetector(surfCPU.SURFParams, 0.01f);
            using (GpuImage<Gray, Byte> gpuModelImage = new GpuImage<Gray, byte>(modelImage))
            //extract features from the object image
            using (GpuMat<float> gpuModelKeyPoints = surfGPU.DetectKeyPointsRaw(gpuModelImage, null))
            using (GpuMat<float> gpuModelDescriptors = surfGPU.ComputeDescriptorsRaw(gpuModelImage, null, gpuModelKeyPoints))
            using (GpuBruteForceMatcher<float> matcher = new GpuBruteForceMatcher<float>(DistanceType.L2))
            {
                modelKeyPoints = new VectorOfKeyPoint();
                surfGPU.DownloadKeypoints(gpuModelKeyPoints, modelKeyPoints);
                watch = Stopwatch.StartNew();

                // extract features from the observed image
                using (GpuImage<Gray, Byte> gpuObservedImage = new GpuImage<Gray, byte>(observedImage))
                using (GpuMat<float> gpuObservedKeyPoints = surfGPU.DetectKeyPointsRaw(gpuObservedImage, null))
                using (GpuMat<float> gpuObservedDescriptors = surfGPU.ComputeDescriptorsRaw(gpuObservedImage, null, gpuObservedKeyPoints))
                using (GpuMat<int> gpuMatchIndices = new GpuMat<int>(gpuObservedDescriptors.Size.Height, k, 1, true))
                using (GpuMat<float> gpuMatchDist = new GpuMat<float>(gpuObservedDescriptors.Size.Height, k, 1, true))
                using (GpuMat<Byte> gpuMask = new GpuMat<byte>(gpuMatchIndices.Size.Height, 1, 1))
                using (Stream stream = new Stream())
                {
                    matcher.KnnMatchSingle(gpuObservedDescriptors, gpuModelDescriptors, gpuMatchIndices, gpuMatchDist, k, null, stream);
                    indices = new Matrix<int>(gpuMatchIndices.Size);
                    mask = new Matrix<byte>(gpuMask.Size);

                    //gpu implementation of voteForUniquess
                    using (GpuMat<float> col0 = gpuMatchDist.Col(0))
                    using (GpuMat<float> col1 = gpuMatchDist.Col(1))
                    {
                        GpuInvoke.Multiply(col1, new MCvScalar(uniquenessThreshold), col1, stream);
                        GpuInvoke.Compare(col0, col1, gpuMask, CMP_TYPE.CV_CMP_LE, stream);
                    }

                    observedKeyPoints = new VectorOfKeyPoint();
                    surfGPU.DownloadKeypoints(gpuObservedKeyPoints, observedKeyPoints);

                    //wait for the stream to complete its tasks
                    //We can perform some other CPU intesive stuffs here while we are waiting for the stream to complete.
                    stream.WaitForCompletion();

                    gpuMask.Download(mask);
                    gpuMatchIndices.Download(indices);

                    if (GpuInvoke.CountNonZero(gpuMask) >= 4)
                    {
                        int nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
                        if (nonZeroCount >= 4)
                            homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);

                        returnValue = nonZeroCount;
                    }

                    watch.Stop();
                }
            }
        }
        else
        {
            //extract features from the object image
            modelKeyPoints = surfCPU.DetectKeyPointsRaw(modelImage, null);
            Matrix<float> modelDescriptors = surfCPU.ComputeDescriptorsRaw(modelImage, null, modelKeyPoints);

            watch = Stopwatch.StartNew();

            // extract features from the observed image
            observedKeyPoints = surfCPU.DetectKeyPointsRaw(observedImage, null);
            Matrix<float> observedDescriptors = surfCPU.ComputeDescriptorsRaw(observedImage, null, observedKeyPoints);
            BruteForceMatcher<float> matcher = new BruteForceMatcher<float>(DistanceType.L2);
            matcher.Add(modelDescriptors);

            indices = new Matrix<int>(observedDescriptors.Rows, k);
            using (Matrix<float> dist = new Matrix<float>(observedDescriptors.Rows, k))
            {
                matcher.KnnMatch(observedDescriptors, indices, dist, k, null);
                mask = new Matrix<byte>(dist.Rows, 1);
                mask.SetValue(255);
                Features2DToolbox.VoteForUniqueness(dist, uniquenessThreshold, mask);
            }

            int nonZeroCount = CvInvoke.cvCountNonZero(mask);
            if (nonZeroCount >= 4)
            {
                nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
                if (nonZeroCount >= 4)
                    homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);
            }

            returnValue = nonZeroCount;
            watch.Stop();
        }

        int p = mask.ManagedArray.OfType<byte>().ToList().Where(q => q == 1).Count();

        //Draw the matched keypoints
        Image<Bgr, Byte> result = Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
           indices, new Bgr(255, 255, 255), new Bgr(255, 255, 255), mask, Features2DToolbox.KeypointDrawType.DEFAULT);

        #region draw the projected region on the image
        if (homography != null && p > 20)
        {  //draw a rectangle along the projected model
            Rectangle rect = modelImage.ROI;
            PointF[] pts = new PointF[] {
           new PointF(rect.Left, rect.Bottom),
           new PointF(rect.Right, rect.Bottom),
           new PointF(rect.Right, rect.Top),
           new PointF(rect.Left, rect.Top)};
            homography.ProjectPoints(pts);

            result.DrawPolyline(Array.ConvertAll<PointF, Point>(pts, Point.Round), true, new Bgr(Color.Red), 5);
        }
        #endregion

        matchTime = watch.ElapsedMilliseconds;

        nonofZeroCount = returnValue;

        return result;
    }

这篇关于EmguCV SURF - 确定匹配的点对的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

06-17 04:26