问题描述
在线性回归中,我经常看到这样的情况:我具有许多功能,并使用它们来预测单个输出,例如
In linear regression I've always seen the situation where I have many features and I use them to predict a single output, for example
f1 f2 f3 f4 --> y1
f1 f2 f3 f4 --> y2
,依此类推...我想知道是否存在预测值即y1实际上是矢量而不是单个值的地方
and so on...I want to know if there is something where the predicted value i.e. y1 is actually a vector not a single value
推荐答案
是的,几乎所有的回归方法(神经网络,支持向量回归器,随机森林回归器,...)都可以很好地用于多维输出.包括线性回归.特别是,如果y是要预测的N行和K列向量的值,而X是N行d列的数据矩阵,则线性回归很简单
Yes, pretty much every regression method (neural networks, support vector regressors, random forest regressors, ....) works just fine for multidimensional output. Including linear regression. In particular if y is N row and K column vector of values to predict, and X is N row, d column data matrix, linear reggresion is simply
A = (X'X)^-1 X'y
然后预测就是形式
XA
又是N行,K列的预测矩阵.
which is again N rows, K columns prediction matrix.
这篇关于预测向量值而不是单个输出的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!