本文介绍了如何计算聚类熵-示例和给出的解决方案,但这是正确的吗?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我想计算此示例方案的熵
I would like to calculate entropy of this example scheme
http://nlp.stanford .edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
熵方程
那么熵是(第一行)
因此,熵适用于该方案
For the first cluster - ( (5/6)*Log(5/6) + (1/6)*Log(1/6) )
For the second cluster - ( (1/6)*Log(1/6) + (1/6)*Log(1/6) + (4/6)*Log(4/6) )
For the third cluster - ( (2/5)*Log(2/5) + (3/5)*Log(3/5) )
最终熵为:
FirtCluster_Entropy + SecondCluster_Entropy + ThirdCluster_Entropy
我正确吗?
推荐答案
非常接近!对于聚类的总熵,您需要通过每个聚类的相对权重对其进行加权.请查看我对上一个问题的回答 https://stackoverflow.com/a/35780505/159646 .
Very close! For the total entropy of the clustering you need need to weight each cluster's entropy by its relative weight. Please see my answer to your previous question https://stackoverflow.com/a/35780505/159646.
此外,它可能应该发布到交叉验证,而不是堆栈溢出.
Also this should probably be posted to Cross Validated instead of Stack Overflow.
这篇关于如何计算聚类熵-示例和给出的解决方案,但这是正确的吗?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!