本文介绍了使用MASS:lda()观察LDA中线性判别式的访问分数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

library(MASS)
example(lda)
plot(z)

如何访问z中的所有点?我想知道LD1和LD2上每个点的值,具体取决于它们的Sp(c,s,v)。

How can I access all the points in z? I want to know the values of every point along LD1 and LD2 depending on their Sp (c,s,v).

推荐答案

您要查找的内容是对象 lda 的对象的 predict()方法的一部分进行计算(请参见?predict.lda )。它作为 predict(z)生成的对象的分量 x 返回:

What you are looking for is computed as part of the predict() method of objects of class "lda" (see ?predict.lda). It is returned as component x of the object produced by predict(z):

## follow example from ?lda
Iris <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),
                   Sp = rep(c("s","c","v"), rep(50,3)))
set.seed(1) ## remove this line if you want it to be pseudo random
train <- sample(1:150, 75)
table(Iris$Sp[train])
## your answer may differ
##  c  s  v
## 22 23 30
z <- lda(Sp ~ ., Iris, prior = c(1,1,1)/3, subset = train)

## get the whole prediction object
pred <- predict(z)
## show first few sample scores on LDs
head(z$x)

最后一行显示线性判别式中对象分数的前几行

the last line shows the first few rows of the object scores on the linear discriminants

> head(pred$x)
          LD1        LD2
40  -8.334664  0.1348578
56   2.462821 -1.5758927
85   2.998319 -0.6648073
134  4.030165 -1.4724530
30  -7.511226 -0.6519301
131  6.779570 -0.8675742

这些得分可以这样绘制

plot(LD2 ~ LD1, data = pred$x)

产生以下情节(针对该训练样本!)

producing the following plot (for this training sample!)

这篇关于使用MASS:lda()观察LDA中线性判别式的访问分数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-18 16:40