本文介绍了什么时候需要使用四元数?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我多年来一直在进行 2D 和 3D 操作,包括图形操作,但从未使用过四元数,因此我对它们没有感觉.我知道它们可用于在欧拉角中困难的某些操作,并且它们还可用于找到最适合一组坐标所需的旋转 (X1, X2...XN, X=(xyz))到另一个(X1',X2'...XN').

I have been carrying out 2D and 3D operations, including graphics, for many years and have never used quaternions so I don't have a feel for them. I know that they can be used for certain operations that are difficult in Euler angles and also that they can be used to find the rotation required to best fit one set of coordinates (X1, X2...XN, X=(xyz)) onto another (X1', X2'... XN').

是否有四元数必不可少的地方?有哪些地方可以让解决方案更优雅或更高效?

Are there places where quaternions are essential? And are there places where they make solutions more elegant or more efficient?

推荐答案

与旋转矩阵相比,它们的内存占用更小,并且比矩阵和角度/轴表示更高效.

They have a smaller memory footprint than rotation matrices and they are more efficient than both matrix and angle/axis representations.

还有:

  • 在两个四元数之间进行插值非常容易,这对于平滑相机移动等很有用.
  • 与矩阵表示相比,浮点四元数的单位归一化受到的舍入缺陷更少.

这篇关于什么时候需要使用四元数?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

06-15 13:43