问题描述
我目前正计划在Boost中为无向图实现正交平面布局算法(Boost Graph Library)。 BGL有一个实现来检查无向图的平面性(Boyer-Myrvold Planarity Testing),并且我打算使用这个方法返回的平面嵌入来做一个正交布局。
但是我不知道如果输入图是非平面的,应该做什么。我应该在这种情况下使用返回的Kuratowski子图做些什么来使图平面化。
关于非平面图的平面化的Google搜索会返回多个调查报告。我不确定从哪里开始。
有许多$ K_5 $和$ K_ {3,3} $ $ K_n $的子图,不介意未成年人,所以直接对待他们并不是非常有效。我建议翻阅这些研究论文,以便了解其他人如何解决这个问题。您应该注意以下特性:(a)给出明智的解决方案,(b)听起来像您感兴趣的图表。
Is there a popular algorithm for the planarization of a non-planar graph.
I'm currently planning to implement a Orthogonal Planar Layout algorithm for undirected graphs in Boost ( Boost Graph Library ). BGL has an implementation to check the planarity of an undirected graph ( Boyer-Myrvold Planarity Testing ) and I plan to use the planar embedding returned by this method to do an orthogonal layout.
But I'm not sure what should be done if the input graph is non-planar. Should I do something with the Kuratowski sub-graph returned in such a scenario to make the graph planar.
A Google Search on "Planarization of non-planar graphs" returns multiple research papers. I'm not sure where to start.
There are exponentially many $K_5$ and $K_{3,3}$ subgraphs of a $K_n$, never mind minors, so treating them directly isn't terribly efficient. I suggest flipping through said research papers to learn a bit about how other people approach the problem. You should pay attention to properties that (a) give sensible solutions and (b) sound like graphs that interest you.
这篇关于一种非平面图平面化的算法的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!