问题描述
迭代器和生成器之间有什么区别?您将使用每种情况的一些示例将会有所帮助。
What is the difference between iterators and generators? Some examples for when you would use each case would be helpful.
推荐答案
iterator
是一个更通用的概念:任何对象的类具有 next
方法(Python 3中的 __ next __
)和 __ iter __
执行返回自我的方法
。
iterator
is a more general concept: any object whose class has a next
method (__next__
in Python 3) and an __iter__
method that does return self
.
每台发电机是一个迭代器,但反之亦然。通过在Python 2.5及更早版本中调用具有一个或多个 yield
表达式( yield
语句)的函数来构建生成器),是一个符合前一段迭代器
定义的对象。
Every generator is an iterator, but not vice versa. A generator is built by calling a function that has one or more yield
expressions (yield
statements, in Python 2.5 and earlier), and is an object that meets the previous paragraph's definition of an iterator
.
您可能想要使用自定义迭代器,而不是生成器,当你需要一个具有一些复杂的状态维护行为的类,或者想要暴露除 next
之外的其他方法(和 __iter __
和 __ init __
)。大多数情况下,生成器(有时,对于足够简单的需求,生成器表达式)就足够了,并且编码更简单,因为状态维护(在合理的限制范围内)基本上是由你完成的框架暂停并恢复。
You may want to use a custom iterator, rather than a generator, when you need a class with somewhat complex state-maintaining behavior, or want to expose other methods besides next
(and __iter__
and __init__
). Most often, a generator (sometimes, for sufficiently simple needs, a generator expression) is sufficient, and it's simpler to code because state maintenance (within reasonable limits) is basically "done for you" by the frame getting suspended and resumed.
例如,生成器如:
def squares(start, stop):
for i in range(start, stop):
yield i * i
generator = squares(a, b)
或等效的生成器表达式(genexp)
or the equivalent generator expression (genexp)
generator = (i*i for i in range(a, b))
需要更多代码来构建自定义迭代器:
would take more code to build as a custom iterator:
class Squares(object):
def __init__(self, start, stop):
self.start = start
self.stop = stop
def __iter__(self): return self
def next(self):
if self.start >= self.stop:
raise StopIteration
current = self.start * self.start
self.start += 1
return current
iterator = Squares(a, b)
但是,当然,你可以轻松地提供 Squares
等级额外的方法,即
But, of course, with class Squares
you could easily offer extra methods, i.e.
def current(self):
return self.start
如果您在申请中确实需要此类额外功能。
if you have any actual need for such extra functionality in your application.
这篇关于Python的生成器和迭代器之间的区别的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!