问题描述
我有 190 个特征和标签,我的批量大小是 20,但经过 9 次迭代 tf.reshape
返回异常 要重塑的输入是一个具有 21 个值的张量,但请求的形状有60,我知道这是由于 Iterator.get_next()
造成的.我如何恢复我的迭代器,以便它再次从头开始提供批次服务?
I have 190 features and labels,My batch size is 20 but after 9 iterations tf.reshape
is returning exception Input to reshape is a tensor with 21 values,but the requested shape has 60 and i know it is due to Iterator.get_next()
.How do i restore my Iterator so that it will again start serving batches from the beginning?
推荐答案
如果你想重启一个 tf.data.Iterator
从它的 Dataset
开始,考虑使用 initializable 迭代器,它有您可以运行以重新初始化迭代器的操作:
If you want to restart a tf.data.Iterator
from the beginning of its Dataset
, consider using an initializable iterator, which has an operation you can run to re-initialize the iterator:
dataset = ... # A `tf.data.Dataset` instance.
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
train_op = ... # Something that depends on `next_element`.
for _ in range(NUM_EPOCHS):
# Initialize the iterator at the beginning of `dataset`.
sess.run(iterator.initializer)
# Loop over the examples in `iterator`, running `train_op`.
try:
while True:
sess.run(train_op)
except tf.errors.OutOfRangeError: # Thrown at the end of the epoch.
pass
# Perform any per-epoch computations here.
有关不同类型的 Iterator
的更多详细信息,请参阅 tf.data
程序员指南.
For more details on the different kinds of Iterator
, see the tf.data
programmer's guide.
这篇关于Tensorflow Dataset API 在完成一个 epoch 后恢复 Iterator的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!