问题描述
我有一个Dataset<Row> inputDS
,其中有4列,即Id, List<long> time, List<String> value, aggregateType
,我想使用map函数在Dataset
value_new
中再添加一列,该map函数需要time
,value
和aggregateType
将其传递给函数getAggregate(String aggregateType, List<long> time, List<String> value)
,并在处理参数时返回一个双精度值.方法getAggregate
返回的Double
值将是新的列值,即value_new
I have a Dataset<Row> inputDS
which has 4 columns namely Id, List<long> time, List<String> value, aggregateType
I want to add one more column to the Dataset
value_new
using map function, that map function takes columns time
, value
and aggregateType
passes that to a function getAggregate(String aggregateType, List<long> time, List<String> value)
and return a double value on processing the parameters. The Double
value returned by the method getAggregate
will be the new column value i.e value of value_new
数据集输入DS
+------+---+-----------+---------------------------------------------+---------------+
| Id| value | time |aggregateType |
+------+---------------+---------------------------------------------+---------------+
|0001 | [1.5,3.4,4.5]| [1551502200000,1551502200000,1551502200000] | Sum |
+------+---------------+---------------------------------------------+---------------+
预期的数据集输出DS
+------+---------------+---------------------------------------------+---------------+-----------+
| Id| value | time |aggregateType | value_new |
+------+---------------+---------------------------------------------+---------------+-----------+
|0001 | [1.5,3.4,4.5]| [1551502200000,1551502200000,1551502200000] | Sum | 9.4 |
+------+---------------+---------------------------------------------+---------------+-----------+
我尝试过的代码.
inputDS.withColumn("value_new",functions.lit(inputDS.map(new MapFunction<Row,Double>(){
public double call(Row row){
String aggregateType = row.getAS("aggregateType");
List<long> timeList = row.getList("time");
List<long> valueList= row.getList("value");
return getAggregate(aggregateType ,timeList,valueList);
}}),Encoders.DOUBLE())));
错误
Unsupported literal type class org.apache.spark.sql.Dataset [value:double]
注意:很抱歉,如果我错误地使用了map
函数,请建议我是否有任何解决方法.
Note Sorry if I used map
function wrongly and please suggest me if there is any workaround.
谢谢.!
推荐答案
出现错误是因为您尝试使用Dataset.map()
的结果创建函数文字(lit()
),您可以在文档中看到的是数据集.您可以在Dataset.withColumn()
的API中看到,您需要一个作为列的参数.
You get the error because you are trying to create a function literal (lit()
) using the result of Dataset.map()
, which you can see in docs is a Dataset. You can see in the API for Dataset.withColumn()
that you need a argument that is a column.
似乎您需要创建一个用户定义的函数.看看如何调用使用JAVA在Spark DataFrame上创建UDF?
It seems like you need to create a user-defined function. Take a look at How do I call a UDF on a Spark DataFrame using JAVA?
这篇关于如何使用Java UDF向Spark数据框添加新列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!