本文介绍了交错并行文件读取比顺序读取慢?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 29岁程序员,3月因学历无情被辞! 我已经实现了一个小的IO类,它可以从不同的磁盘上的多个相同的文件(例如包含相同文件的两个硬盘)读取。在顺序的情况下,两个磁盘在文件上平均读取60MB / s,但是当我做一个交错的(例如4k磁盘1,4k磁盘2然后合并),有效的读取速度降低到40MB / s而不是增加? 上下文:Win 7 + JDK 7b70,2GB RAM,2.2GB测试文件。基本上,我试图模仿Win7的ReadyBoost和RAID X以一个穷人的方式。 在核心,当一个read()被发布给类,它创建两个可运行的指令从一定位置和长度读取预先打开的RandomAccessFile。使用一个执行器服务和Future.get()调用,当两者都完成时,数据读取被复制到一个公共缓冲区并返回给调用者。 有没有概念我的方法错误? (例如,操作系统缓存机制将永远抵消?) 受保护的< T>列表与LT; T> waitForAll(List< Future< T>期货)抛出MultiIOException { MultiIOException mex = null; int i = 0; 列表< T> result = new ArrayList< T>(futures.size()); (未来< T> f:期货){尝试{ result.add(f.get()); } catch(InterruptedException ex){ if(mex == null){ mex = new MultiIOException(); mex.exceptions.add(new ExceptionPair(metrics [i] .file,ex)); } catch(ExecutionException ex){ if(mex == null){ mex = new MultiIOException(); mex.exceptions.add(new ExceptionPair(metrics [i] .file,ex)); } i ++; if(mex!= null){ throw mex; } 返回结果; $ b $ public int read(long position,byte [] output,int start,int length)抛出IOException { if(start<开始+长度> output.length){ throw new IndexOutOfBoundsException( String.format(start =%d,length =%d,output =%d, start,length ,output.length)); } //计算片段大小和位置 int result = 0; final long [] positions = new long [metrics.length]; final int [] length = new int [metrics.length]; double speedSum = 0.0; double maxValue = 0.0; int maxIndex = 0; (int i = 0; i< metrics.length; i ++){ speedSum + = metrics [i] .readSpeed; if(metrics [i] .readSpeed> maxValue){ maxValue = metrics [i] .readSpeed; maxIndex = i; } } //调整读取长度 int lengthSum = length; for(int i = 0; i< metrics.length; i ++){ int len =(int)Math.ceil(length * metrics [i] .readSpeed / speedSum); 长度[i] =(len> lengthSum)?长度:len; lengthSum - =长度[i]; } if(lengthSum> 0){ lengths [maxIndex] + = lengthSum; } //调整阅读位置 long positionDelta = position; for(int i = 0; i< metrics.length; i ++){ positions [i] = positionDelta; positionDelta + =(long)lengths [i]; } List< Future< byte []>> futures = new LinkedList< Future< byte []>>(); //并行读取 for(int i = 0; i< metrics.length; i ++){ final int j = i; futures.add(exec.submit(new Callable< byte []>(){ @Override public byte [] call()throws Exception { byte [] buffer = new byte [length [j]]; long t = System.nanoTime(); long t0 = t; long currPos = metrics [j] .handle .getFilePointer(); metrics [j] .handle.seek(positions [j]); t = System.nanoTime() - t; metrics [j] .seekTime = t * 1024.0 * 1024.0 / Math.abs(currPos - positions [j])/ 1E9; int c = metrics [j] .handle.read(buffer); t0 = System.nanoTime() - t0; //如果我们读了一些,调整读取速度if(c> 0){ metrics [j] .readSpeed =(alpha * c * 1E9 / t0 / 1024/1024 +(1 - alpha)* metrics [j] .readSpeed); } if(c return null; } else if(c == 0){ return EMPTY_BYTE_ARRAY; } else if(c return Arrays.copyOf(buffer,c); } 返回缓冲区; } })); } List< byte []> data = waitForAll(期货); 布尔值eof = true; (byte [] b:data){ if(b!= null&& b.length> 0){ System.arraycopy(b,0,output,开始+结果,b.length); 结果+ = b.length; eof = false; } else { break; //其余的可能达到EOF } //如果根本没有数据,我们到达文件的末尾if(eof){返回-1; } sequentialPosition =位置+(长)结果; //评估读取的最快文件 double maxSpeed = 0; maxIndex = 0; for(int i = 0; i< metrics.length; i ++){ if(metrics [i] .readSpeed> maxSpeed){ maxSpeed = metrics [i] .readSpeed ; maxIndex = i; } } 最快=指标[maxIndex]; 返回结果; (b (度量数组中的FileMetrics包含读取速度的度量以自适应地确定缓冲区大小各种输入通道 - 在我的测试与alpha = 0和readSpeed = 1结果平等分配) 编辑 我跑了非纠结的测试(例如,在单独的线程中独立读取这两个文件),并且我已经获得了110MB / s的组合有效速度。 / b> 我想我知道为什么会发生这种情况。 当我按顺序并行读取时,它不是顺序读取磁盘,而是由于交织而引起的读取 - 跳过 - 读取 - 跳过模式(并且可能充满分配表查找)。这基本上将每个磁盘的有效读取速度降低到一半或更差。正如你所说,在磁盘上的顺序读取是比读取跳过读取跳过模式快得多。硬盘在顺序读取时能够具有高带宽,但是寻道时间(延迟)是昂贵的。 $ b 不是在每个磁盘上存储文件的副本,而是尝试将文件的块i存储在磁盘i(mod 2)上。这样你就可以顺序读取两个磁盘,并将结果重新组合到内存中。 I have implemented a small IO class, which can read from multiple and same files on different disks (e.g two hard disks containing the same file). In sequential case, both disks read 60MB/s in average over the file, but when I do an interleaved (e.g. 4k disk 1, 4k disk 2 then combine), the effective read speed is reduced to 40MB/s instead of increasing?Context: Win 7 + JDK 7b70, 2GB RAM, 2.2GB test file. Basically, I try to mimic Win7's ReadyBoost and RAID x in a poor man's fashion.In the heart, when a read() is issued to the class, it creates two runnables with instructions to read a pre-opened RandomAccessFile from a certain position and length. Using an executor service and Future.get() calls, when both finish, the data read gets copied into a common buffer and returned to the caller.Is there a conceptional error in my approach? (For example, the OS caching mechanism will always counteract?)protected <T> List<T> waitForAll(List<Future<T>> futures)throws MultiIOException { MultiIOException mex = null; int i = 0; List<T> result = new ArrayList<T>(futures.size()); for (Future<T> f : futures) { try { result.add(f.get()); } catch (InterruptedException ex) { if (mex == null) { mex = new MultiIOException(); } mex.exceptions.add(new ExceptionPair(metrics[i].file, ex)); } catch (ExecutionException ex) { if (mex == null) { mex = new MultiIOException(); } mex.exceptions.add(new ExceptionPair(metrics[i].file, ex)); } i++; } if (mex != null) { throw mex; } return result;}public int read(long position, byte[] output, int start, int length)throws IOException { if (start < 0 || start + length > output.length) { throw new IndexOutOfBoundsException( String.format("start=%d, length=%d, output=%d", start, length, output.length)); } // compute the fragment sizes and positions int result = 0; final long[] positions = new long[metrics.length]; final int[] lengths = new int[metrics.length]; double speedSum = 0.0; double maxValue = 0.0; int maxIndex = 0; for (int i = 0; i < metrics.length; i++) { speedSum += metrics[i].readSpeed; if (metrics[i].readSpeed > maxValue) { maxValue = metrics[i].readSpeed; maxIndex = i; } } // adjust read lengths int lengthSum = length; for (int i = 0; i < metrics.length; i++) { int len = (int)Math.ceil(length * metrics[i].readSpeed / speedSum); lengths[i] = (len > lengthSum) ? lengthSum : len; lengthSum -= lengths[i]; } if (lengthSum > 0) { lengths[maxIndex] += lengthSum; } // adjust read positions long positionDelta = position; for (int i = 0; i < metrics.length; i++) { positions[i] = positionDelta; positionDelta += (long)lengths[i]; } List<Future<byte[]>> futures = new LinkedList<Future<byte[]>>(); // read in parallel for (int i = 0; i < metrics.length; i++) { final int j = i; futures.add(exec.submit(new Callable<byte[]>() { @Override public byte[] call() throws Exception { byte[] buffer = new byte[lengths[j]]; long t = System.nanoTime(); long t0 = t; long currPos = metrics[j].handle.getFilePointer(); metrics[j].handle.seek(positions[j]); t = System.nanoTime() - t; metrics[j].seekTime = t * 1024.0 * 1024.0 / Math.abs(currPos - positions[j]) / 1E9 ; int c = metrics[j].handle.read(buffer); t0 = System.nanoTime() - t0; // adjust the read speed if we read something if (c > 0) { metrics[j].readSpeed = (alpha * c * 1E9 / t0 / 1024 / 1024 + (1 - alpha) * metrics[j].readSpeed) ; } if (c < 0) { return null; } else if (c == 0) { return EMPTY_BYTE_ARRAY; } else if (c < buffer.length) { return Arrays.copyOf(buffer, c); } return buffer; } })); } List<byte[]> data = waitForAll(futures); boolean eof = true; for (byte[] b : data) { if (b != null && b.length > 0) { System.arraycopy(b, 0, output, start + result, b.length); result += b.length; eof = false; } else { break; // the rest probably reached EOF } } // if there was no data at all, we reached the end of file if (eof) { return -1; } sequentialPosition = position + (long)result; // evaluate the fastest file to read double maxSpeed = 0; maxIndex = 0; for (int i = 0; i < metrics.length; i++) { if (metrics[i].readSpeed > maxSpeed) { maxSpeed = metrics[i].readSpeed; maxIndex = i; } } fastest = metrics[maxIndex]; return result;}(FileMetrics in metrics array contain measurements of read speed to adaptively determine the buffer sizes of various input channels - in my test with alpha = 0 and readSpeed = 1 results equal distribution)EditI ran an non-entangled test (e.g read the two files independently in separate threads.) and I've got a combined effective speed of 110MB/s.Edit2I guess I know why is this happening.When I read in parallel and in sequence, it is not a sequential read for the disks, but rather read-skip-read-skip pattern due the interleaving (and possibly riddled with allocation table lookups). This basically reduces the effective read speed per disk to half or worse. 解决方案 As you said, a sequential read on a disk is much faster than a read-skip-read-skip pattern. Hard disks are capable of high bandwidth when reading sequentially, but the seek time (latency) is expensive.Instead of storing a copy of the file in each disk, try storing block i of the file on disk i (mod 2). This way you can read from both disks sequentially and recombine the result in memory. 这篇关于交错并行文件读取比顺序读取慢?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云!