本文介绍了找不到按照我的目标为 Mandelbrot-set 上色的方法的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我已经成功地为 Mandelbrot 集着色,尽管在它变得模糊"并且图案停止之前我无法放大很远.我通过增加 max_iteration 来解决这个问题,这有效,但我在 *1 放大倍率下获得的颜色很少,而且只有在放大时才会出现很多颜色.我理解为什么会发生这种情况,因为在真正的"Mandelbrot-set 中没有颜色和增加 max_iterations 只会让它更接近那个.但我的问题是,像 youtube 上的缩放如何在整个缩放过程​​中拥有美丽的色彩,同时仍然能够放大以获得永远的感觉?

我试过在网上到处寻找,但找不到解决方案,当我查看这些 youtube 缩放的描述时,它们似乎几乎没有提供关于它们如何制作缩放的任何信息.

这里只是绘制 Mandelbrot 集的代码部分.下面的代码是在处理过程中编写的,它是带有添加了可视化库的 java.您可以在此处了解有关该计划的更多信息:

这是一张具有较低 max_iterations 并稍微放大的图像,如您所见,它很乏味而且色彩不是很丰富:

这是一张具有高 max_iterations 并缩小的图像,如您所见,它的色彩不是很丰富:

这是一张具有高 max_iterations 并放大的图像,您可以看到它非常丰富多彩:

解决方案

先看看这个相关的QA:

主要思想是使用直方图将颜色梯度更有效地分配到已使用的索引,而不是在未使用的索引上均匀浪费许多颜色.它还使用了一个特定的视觉上令人愉悦的渐变函数:

动态最大迭代次数 其他人建议的只会影响整体性能和缩放细节.但是,如果您想要没有缩放的漂亮颜色,那么您需要计算浮点迭代计数,也称为Mandelbrot Escape.有一种数学方法可以从方程的最后一个子结果计算迭代计数小数部分.有关更多信息,请参阅:

但是我从来没有尝试过所以带着偏见读这个:如果我没看错,你想要的是计算这个方程:

mu = m + frac = n + 1 - log (log |Z(n)|)/log 2

其中 n 是您的迭代次数,Z(n) 是您正在迭代的方程的复杂域子结果.所以现在从 mu 计算颜色,现在是浮点数,而不是从 n...

[Edit2] GLSL mandelbrot 基于以上链接的分数转义

我添加了分数转义并修改了直方图多通道重新着色以匹配新输出...

顶点:

//顶点#version 420 核心vec2 pos 中的布局(位置 = 0);//glVertex2f 输出平滑 vec2 p;//纹理终点 无效主(){p=pos;gl_Position=vec4(pos,0.0,1.0);}

片段:

//片段#version 420 核心统一 vec2 p0=vec2(0.0,0.0);//鼠标位置 统一浮动缩放=1.000;//飞涨 [-]统一整数 n=100;//迭代 [-]统一 int sh=7;//定点精度 [bits]统一 int multipass=0;//多路?在平滑的 vec2 p 中;出 vec4 col;const int n0=1;//转义后强制迭代以提高精度vec3spectral_color(float l)//RGB <-λ l <400,700>[纳米]{浮动 t;vec3 c=vec3(0.0,0.0,0.0);如果 ((l>=400.0)&&(l=410.0)&&(l=545.0)&&(l<595.0)) { t=(l-545.0)/(595.0-545.0);c.r= +(1.98*t)-(t*t);}否则如果 ((l>=595.0)&&(l=650.0)&&(l<700.0)) { t=(l-650.0)/(700.0-650.0);c.r=0.65-(0.84*t)+(0.20*t*t);}如果 ((l>=415.0)&&(l=475.0)&&(l<590.0)) { t=(l-475.0)/(590.0-475.0);c.g=0.8 +(0.76*t)-(0.80*t*t);}否则如果 ((l>=585.0)&&(l=400.0)&&(l=475.0)&&(l<560.0)) { t=(l-475.0)/(560.0-475.0);c.b=0.7 -( t)+(0.30*t*t);}返回 c;}无效主(){内部 i,j,N;vec2 pp;浮动 x,y,q,xx,yy,mu;pp=(p/缩放)-p0;//y (-1.0, 1.0)pp.x-=0.5;//x (-1.5, 0.5)对于 (x=0.0,y=0.0,xx=0.0,yy=0.0,i=0;(i

CPU 端 C++/VCL 代码:

//---------------------------------------------------------------------#include #pragma hdrstop#include "Unit1.h"#include "gl\OpenGL3D_double.cpp"//---------------------------------------------------------------------------#pragma 包(smart_init)#pragma 资源*.dfm"TForm1 *Form1;OpenGLscreen scr;GLSL 程序 shd;浮动 mx=0.0,my=0.0,mx0=0.0,my0=0.0,mx1=0.0,my1=0.0;TShiftState sh0,sh1;int xs=1,ys=1;浮动缩放=1.000;int sh=7;整数 N=256;int_multi=0;无符号整数查询 ID[2];#define multi_passOpenGL纹理txr;//---------------------------------------------------------------------------DWORD 光谱颜色(浮动 l)//RGB <-λ l <400,700>[纳米]{浮动 t;浮动 r,g,b;双字 c,x;r=0.0;g=0.0;b=0.0;如果 ((l>=400.0)&&(l=410.0)&&(l=545.0)&&(l<595.0)) { t=(l-545.0)/(595.0-545.0);r= +(1.98*t)-(t*t);}否则如果 ((l>=595.0)&&(l=650.0)&&(l<700.0)) { t=(l-650.0)/(700.0-650.0);r=0.65-(0.84*t)+(0.20*t*t);}如果 ((l>=415.0)&&(l=475.0)&&(l<590.0)) { t=(l-475.0)/(590.0-475.0);g=0.8 +(0.76*t)-(0.80*t*t);}否则如果 ((l>=585.0)&&(l=400.0)&&(l=475.0)&&(l<560.0)) { t=(l-475.0)/(560.0-475.0);b=0.7 -( t)+(0.30*t*t);}r*=255.0;g*=255.0;b*=255.0;x=r;c = x;x=g;c|=x<<8;x=b;c|=x<<16;返回 c;}//---------------------------------------------------------------------------无效 gl_draw(){scr.cls();//用于旧 GL 渲染的矩阵glMatrixMode(GL_PROJECTION);glLoadIdentity();glMatrixMode(GL_MODELVIEW);glLoadIdentity();glMatrixMode(GL_TEXTURE);glLoadIdentity();//GLSL制服shd.bind();shd.set2f("p0",mx,my);//平移位置shd.set1f("缩放",缩放);//飞涨shd.set1i("n",N);//迭代shd.set1i("sh",sh);//定点精度(移位)shd.set1i("multipass",_multi);//单/多通道//发出第一个查询//只记录所有上一次之后的时间//命令已经完成glQueryCounter(queryID[0], GL_TIMESTAMP);//QUAD 覆盖屏幕glColor3f(1.0,1.0,1.0);glBegin(GL_QUADS);glVertex2f(-1.0,+1.0);glVertex2f(-1.0,-1.0);glVertex2f(+1.0,-1.0);glVertex2f(+1.0,+1.0);glEnd();shd.unbind();//[多重]如果(_multi){浮动 t,m,n=N<使用的颜色索引(跳过孔)对于 (i=1,j=1;i颜色m=1.0/float(j);hist[0]=0x00000000;对于 (i=1;iCaption=AnsiString().sprintf("dt: %f ms p0:%.3fx%.3f zoom: %.1lf N:%i<<%i
",(t1-t0)/1000000.0,mx,my,zoom,N,sh);}//---------------------------------------------------------------------------__fastcall TForm1::TForm1(TComponent* Owner):TForm(Owner){scr.init(this);shd.set_source_file("","","","Mandelbrot_set.glsl_vert","Mandelbrot_set.glsl_frag");glGenQueries(2, queryID);//漂亮的螺旋_multi=1;缩放=300.0;mx = 0.268;我的 =-0.102;}//---------------------------------------------------------------------------void __fastcall TForm1::FormDestroy(TObject *Sender){scr.exit();}//---------------------------------------------------------------------------void __fastcall TForm1::FormResize(TObject *Sender){scr.resize();xs=客户端宽度;ys=客户端高度;txr.resize(xs,ys);gl_draw();}//---------------------------------------------------------------------------void __fastcall TForm1::FormPaint(TObject *Sender){gl_draw();}//---------------------------------------------------------------------------void __fastcall TForm1::FormMouseMove(TObject *Sender, TShiftState Shift, int X,int Y){布尔 q0,q1;mx1=1.0-divide(X+X,xs-1);my1=divide(Y+Y,ys-1)-1.0;sh1=Shift;q0=sh0.Contains(ssLeft);q1=sh1.Contains(ssLeft);如果 (q1){mx-=(mx1-mx0)/缩放;我-=(my1-my0)/缩放;}mx0=mx1;my0=my1;sh0=sh1;gl_draw();}//---------------------------------------------------------------------------void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,TShiftState Shift, int X, int Y){FormMouseMove(Sender,Shift,X,Y);}//---------------------------------------------------------------------------void __fastcall TForm1::FormMouseUp(TObject *Sender, TMouseButton Button,TShiftState Shift, int X, int Y){FormMouseMove(Sender,Shift,X,Y);}//---------------------------------------------------------------------------void __fastcall TForm1::FormMouseWheel(TObject *Sender, TShiftState Shift, int WheelDelta, TPoint &MousePos, bool &Handled){if (WheelDelta>0) zoom*=1.2;if (WheelDelta128) N>>=1;gl_draw();}//[PgDown]}//---------------------------------------------------------------------------

这是单程分数转义n=100*32:

这是单程整数转义n=100:

如您所见,对于相同的迭代次数 (100),分数转义要好得多.

最后还是不错的多通道(作为炫耀)只有 256 次迭代和 ~300 倍变焦:

对比单程:

关于修改的一些说明:

我在计数器(定点)中添加了 sh 小数位部分.所以最大计数现在是 n<< 而不是 n.我还添加了 n0 常量,以降低转义小数部分的错误.该链接建议使用 2 次迭代,但我认为 1 次看起来更好(它还从对数方程中删除了 i+1 增量).迭代循环没有改变,我只是在它之后添加相同的 n0 迭代,然后计算分数转义 mu 并将其转换为定点(因为我的着色器输出整数).

Multi pass 仅在 CPU 端代码上更改.它只是重新索引使用过的索引,因此它们中没有孔,并使用可见光谱颜色重新着色.

这里演示:

I've been successful in coloring the Mandelbrot-set although I can't zoom in very far until it becomes "blurry" and the pattern stops. I fix this by increasing the max_iteration, this works but I get very few colors at *1 magnification and lot's of colors only appear when I zoom in. I understand why this happens since in a "true" Mandelbrot-set there are no colors and increasing the max_iterations just brings it closer to that. But my question is, is how do zooms such as on youtube have beautiful colors throughout the whole zooming process while still being able to zoom on for what feels like forever?

I've tried looking everywhere online but I can't find a solution and when I look in the descriptions of these youtube zooms they seem to provide barely anything on how they made that zoom.

Here is just the section of code which draws the Mandelbrot set. The code below is written in processing which is java with added visual libraries. You can find out more about the program here: https://processing.org/

//m is max_iterations
//mb is the function which calculates how many iterations each point took to escape to infinity. I won't be including the function since I know it works fine and it's quite messy.
//i'm using a HSB/HSV system to draw the mandelbrot

hue=(mb(x, y, m)*360)/m;
sat=255;
if (mb(x, y, m)<m) {
  val=255;
}
else {
  val=0;
}

stroke(hue,sat,val);
point(x, y);

I understand why my problem is happening but I don't know how to solve it.

Here is an image with a low max_iterations and zoomed out, as you can see it's very colorful:

Here is an image with a low max_iterations and zoomed in slightly, as you can see it's boring and not very colorful:

Here is an image with a high max_iterations and zoomed out, as you can see it's not very colorful:

Here is an image with a high max_iterations and zoomed in, as you can see it's very colorful:

解决方案

First take a look at this related QA:

The main idea is to use histogram to distribute the color gradients more effectively to used indexes instead of uniformly wasting many colors on unused indexes. Also it uses a specific visually pleasing gradient function:

Dynamic max iterations count suggested by others will only affect overall performance and details in zooms. However if you want nice colors without zoom then you need to compute floating point iterations count which is also called Mandelbrot Escape. There is a math way that can compute the iterations count fractional part from the last sub-results of the equation. For more info see:

However I never tried it so read this with prejudice: If I read it right what you want is to compute this equation:

mu = m + frac = n + 1 - log (log  |Z(n)|) / log 2

Where n is your iteration count, Z(n) is the complex domain sub-result of the equation you are iterating on. So now compute color from mu which is floating point now instead of from n...

[Edit2] GLSL mandelbrot with fractional escape based on links above

I added the fractional escape and modified the histogram multi pass recoloring to match new output...

Vertex:

// Vertex
#version 420 core
layout(location=0) in vec2 pos;     // glVertex2f <-1,+1>
out smooth vec2 p;                  // texture end point <0,1>
void main()
    {
    p=pos;
    gl_Position=vec4(pos,0.0,1.0);
    }

Fragment:

// Fragment
#version 420 core
uniform vec2 p0=vec2(0.0,0.0);      // mouse position <-1,+1>
uniform float zoom=1.000;           // zoom [-]
uniform int  n=100;                 // iterations [-]
uniform int  sh=7;                  // fixed point accuracy [bits]
uniform int  multipass=0;           // multi pass?
in smooth vec2 p;
out vec4 col;

const int n0=1;                     // forced iterations after escape to improve precision

vec3 spectral_color(float l)        // RGB <0,1> <- lambda l <400,700> [nm]
    {
    float t;  vec3 c=vec3(0.0,0.0,0.0);
         if ((l>=400.0)&&(l<410.0)) { t=(l-400.0)/(410.0-400.0); c.r=    +(0.33*t)-(0.20*t*t); }
    else if ((l>=410.0)&&(l<475.0)) { t=(l-410.0)/(475.0-410.0); c.r=0.14         -(0.13*t*t); }
    else if ((l>=545.0)&&(l<595.0)) { t=(l-545.0)/(595.0-545.0); c.r=    +(1.98*t)-(     t*t); }
    else if ((l>=595.0)&&(l<650.0)) { t=(l-595.0)/(650.0-595.0); c.r=0.98+(0.06*t)-(0.40*t*t); }
    else if ((l>=650.0)&&(l<700.0)) { t=(l-650.0)/(700.0-650.0); c.r=0.65-(0.84*t)+(0.20*t*t); }
         if ((l>=415.0)&&(l<475.0)) { t=(l-415.0)/(475.0-415.0); c.g=             +(0.80*t*t); }
    else if ((l>=475.0)&&(l<590.0)) { t=(l-475.0)/(590.0-475.0); c.g=0.8 +(0.76*t)-(0.80*t*t); }
    else if ((l>=585.0)&&(l<639.0)) { t=(l-585.0)/(639.0-585.0); c.g=0.84-(0.84*t)           ; }
         if ((l>=400.0)&&(l<475.0)) { t=(l-400.0)/(475.0-400.0); c.b=    +(2.20*t)-(1.50*t*t); }
    else if ((l>=475.0)&&(l<560.0)) { t=(l-475.0)/(560.0-475.0); c.b=0.7 -(     t)+(0.30*t*t); }
    return c;
    }

void main()
    {
    int i,j,N;
    vec2 pp;
    float x,y,q,xx,yy,mu;
    pp=(p/zoom)-p0;         // y (-1.0, 1.0)
    pp.x-=0.5;              // x (-1.5, 0.5)
    for (x=0.0,y=0.0,xx=0.0,yy=0.0,i=0;(i<n-n0)&&(xx+yy<4.0);i++)
        {
        q=xx-yy+pp.x;
        y=(2.0*x*y)+pp.y;
        x=q;
        xx=x*x;
        yy=y*y;
        }
    for (j=0;j<n0;j++,i++)  // 2 more iterations to diminish fraction escape error
        {
        q=xx-yy+pp.x;
        y=(2.0*x*y)+pp.y;
        x=q;
        xx=x*x;
        yy=y*y;
        }
    mu=float(i)-log(log(sqrt(xx+yy))/log(2.0));
    mu*=float(1<<sh); i=int(mu);
    N=n<<sh;
    if (i>N) i=N;
    if (i<0) i=0;

    if (multipass!=0)
        {
        // i
        float r,g,b;
        r= i     &255; r/=255.0;
        g=(i>> 8)&255; g/=255.0;
        b=(i>>16)&255; b/=255.0;
        col=vec4(r,g,b,255);
        }
    else{
        // RGB
        q=float(i)/float(N);
        q=pow(q,0.2);
        col=vec4(spectral_color(400.0+(300.0*q)),1.0);
        }
    }

CPU side C++/VCL code:

//---------------------------------------------------------------------------
#include <vcl.h>
#pragma hdrstop
#include "Unit1.h"
#include "gl\OpenGL3D_double.cpp"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
OpenGLscreen scr;
GLSLprogram shd;
float mx=0.0,my=0.0,mx0=0.0,my0=0.0,mx1=0.0,my1=0.0;
TShiftState sh0,sh1;
int xs=1,ys=1;
float zoom=1.000;
int sh=7;
int N=256;
int _multi=0;
unsigned int queryID[2];
#define multi_pass
OpenGLtexture txr;
//---------------------------------------------------------------------------
DWORD spectral_color(float l)        // RGB <0,1> <- lambda l <400,700> [nm]
    {
    float t;  float r,g,b; DWORD c,x; r=0.0; g=0.0; b=0.0;
         if ((l>=400.0)&&(l<410.0)) { t=(l-400.0)/(410.0-400.0); r=    +(0.33*t)-(0.20*t*t); }
    else if ((l>=410.0)&&(l<475.0)) { t=(l-410.0)/(475.0-410.0); r=0.14         -(0.13*t*t); }
    else if ((l>=545.0)&&(l<595.0)) { t=(l-545.0)/(595.0-545.0); r=    +(1.98*t)-(     t*t); }
    else if ((l>=595.0)&&(l<650.0)) { t=(l-595.0)/(650.0-595.0); r=0.98+(0.06*t)-(0.40*t*t); }
    else if ((l>=650.0)&&(l<700.0)) { t=(l-650.0)/(700.0-650.0); r=0.65-(0.84*t)+(0.20*t*t); }
         if ((l>=415.0)&&(l<475.0)) { t=(l-415.0)/(475.0-415.0); g=             +(0.80*t*t); }
    else if ((l>=475.0)&&(l<590.0)) { t=(l-475.0)/(590.0-475.0); g=0.8 +(0.76*t)-(0.80*t*t); }
    else if ((l>=585.0)&&(l<639.0)) { t=(l-585.0)/(639.0-585.0); g=0.84-(0.84*t)           ; }
         if ((l>=400.0)&&(l<475.0)) { t=(l-400.0)/(475.0-400.0); b=    +(2.20*t)-(1.50*t*t); }
    else if ((l>=475.0)&&(l<560.0)) { t=(l-475.0)/(560.0-475.0); b=0.7 -(     t)+(0.30*t*t); }
    r*=255.0; g*=255.0; b*=255.0;
    x=r; c =x;
    x=g; c|=x<<8;
    x=b; c|=x<<16;
    return c;
    }
//---------------------------------------------------------------------------
void gl_draw()
    {
    scr.cls();

    // matrix for old GL rendering
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    glMatrixMode(GL_TEXTURE);
    glLoadIdentity();


    // GLSL uniforms
    shd.bind();
    shd.set2f("p0",mx,my);          // pan position
    shd.set1f("zoom",zoom);         // zoom
    shd.set1i("n",N);               // iterations
    shd.set1i("sh",sh);             // fixed point accuracy (shift)
    shd.set1i("multipass",_multi);  // single/multi pass

    // issue the first query
    // Records the time only after all previous
    // commands have been completed
    glQueryCounter(queryID[0], GL_TIMESTAMP);

    // QUAD covering screen
    glColor3f(1.0,1.0,1.0);
    glBegin(GL_QUADS);
    glVertex2f(-1.0,+1.0);
    glVertex2f(-1.0,-1.0);
    glVertex2f(+1.0,-1.0);
    glVertex2f(+1.0,+1.0);
    glEnd();
    shd.unbind();

    // [multipas]
    if (_multi)
        {
        float t,m,n=N<<sh;
        DWORD *hist=new DWORD[n+1];
        int sz=txr.xs*txr.ys,i,j;
        // get rendered image
        glReadPixels(0,0,txr.xs,txr.ys,GL_RGBA,GL_UNSIGNED_BYTE,txr.txr);
        // compute histogram
        for (i=0;i<=n;i++) hist[i]=0;
        for (i=0;i<sz;i++) hist[txr.txr[i]&0x00FFFFFF]++;
        // histogram -> used color index (skip holes)
        for (i=1,j=1;i<=n;i++)
         if (hist[i]){ hist[i]=j; j++; }
        // used color index -> color
        m=1.0/float(j); hist[0]=0x00000000;
        for (i=1;i<=n;i++)
         if (hist[i]){ t=hist[i]; t*=m; hist[i]=spectral_color(400.0+(300.0*t)); }
          else hist[i]=0x00000000;
        // recolor image
        for (i=0;i<sz;i++) txr.txr[i]=hist[txr.txr[i]&0x00FFFFFF];
        // render it back
        scr.cls();
        txr.bind();
        glColor3f(1.0,1.0,1.0);
        glBegin(GL_QUADS);
        glTexCoord2f(0.0,1.0); glVertex2f(-1.0,+1.0);
        glTexCoord2f(0.0,0.0); glVertex2f(-1.0,-1.0);
        glTexCoord2f(1.0,0.0); glVertex2f(+1.0,-1.0);
        glTexCoord2f(1.0,1.0); glVertex2f(+1.0,+1.0);
        glEnd();
        txr.unbind();
        glDisable(GL_TEXTURE_2D);
        delete[] hist;
        }

    // issue the second query
    // records the time when the sequence of OpenGL
    // commands has been fully executed
    glQueryCounter(queryID[1], GL_TIMESTAMP);


    // GL driver info and GLSL log
    scr.text_init_pix(0.75);
    glColor4f(1.0,1.0,1.0,0.9);
    scr.text(glGetAnsiString(GL_VENDOR));
    scr.text(glGetAnsiString(GL_RENDERER));
    scr.text("OpenGL ver: "+glGetAnsiString(GL_VERSION));
    if (_multi) scr.text("Multi pass");
     else       scr.text("Single pass");
    if (shd.log.Length()!=41)
     for (int i=1;i<=shd.log.Length();) scr.text(str_load_lin(shd.log,i,true));
    scr.text_exit();

    scr.exe();
    scr.rfs();

    // wait until the results are available
    int e;
    unsigned __int64 t0,t1;
    for (e=0;!e;) glGetQueryObjectiv(queryID[0],GL_QUERY_RESULT_AVAILABLE,&e);
    for (e=0;!e;) glGetQueryObjectiv(queryID[1],GL_QUERY_RESULT_AVAILABLE,&e);
    glGetQueryObjectui64v(queryID[0], GL_QUERY_RESULT, &t0);
    glGetQueryObjectui64v(queryID[1], GL_QUERY_RESULT, &t1);
    Form1->Caption=AnsiString().sprintf("dt: %f ms p0:%.3fx%.3f zoom: %.1lf N:%i<<%i
",(t1-t0)/1000000.0,mx,my,zoom,N,sh);
    }
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner):TForm(Owner)
    {
    scr.init(this);
    shd.set_source_file("","","","Mandelbrot_set.glsl_vert","Mandelbrot_set.glsl_frag");
    glGenQueries(2, queryID);
    // nice spirals
    _multi=1;
    zoom=300.0;
    mx  = 0.268;
    my  =-0.102;
    }
//---------------------------------------------------------------------------
void __fastcall TForm1::FormDestroy(TObject *Sender)
    {
    scr.exit();
    }
//---------------------------------------------------------------------------
void __fastcall TForm1::FormResize(TObject *Sender)
    {
    scr.resize();
    xs=ClientWidth;
    ys=ClientHeight;
    txr.resize(xs,ys);
    gl_draw();
    }
//---------------------------------------------------------------------------
void __fastcall TForm1::FormPaint(TObject *Sender)
    {
    gl_draw();
    }
//---------------------------------------------------------------------------
void __fastcall TForm1::FormMouseMove(TObject *Sender, TShiftState Shift, int X,int Y)
    {
    bool q0,q1;
    mx1=1.0-divide(X+X,xs-1);
    my1=divide(Y+Y,ys-1)-1.0;
    sh1=Shift;
    q0=sh0.Contains(ssLeft);
    q1=sh1.Contains(ssLeft);
    if (q1)
        {
        mx-=(mx1-mx0)/zoom;
        my-=(my1-my0)/zoom;
        }
    mx0=mx1; my0=my1; sh0=sh1;
    gl_draw();
    }
//---------------------------------------------------------------------------
void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,TShiftState Shift, int X, int Y)
    {
    FormMouseMove(Sender,Shift,X,Y);
    }
//---------------------------------------------------------------------------
void __fastcall TForm1::FormMouseUp(TObject *Sender, TMouseButton Button,TShiftState Shift, int X, int Y)
    {
    FormMouseMove(Sender,Shift,X,Y);
    }
//---------------------------------------------------------------------------
void __fastcall TForm1::FormMouseWheel(TObject *Sender, TShiftState Shift, int WheelDelta, TPoint &MousePos, bool &Handled)
    {
    if (WheelDelta>0) zoom*=1.2;
    if (WheelDelta<0) zoom/=1.2;
    Handled=true;
    gl_draw();
    }
//---------------------------------------------------------------------------
void __fastcall TForm1::FormKeyDown(TObject *Sender, WORD &Key, TShiftState Shift)
    {
    Caption=Key;
    if (Key==32){ _multi=!_multi; gl_draw(); }      // [Space]
    if (Key==33){ if (N<8192) N<<=1; gl_draw(); }   // [PgUp]
    if (Key==34){ if (N> 128) N>>=1; gl_draw(); }   // [PgDown]
    }
//---------------------------------------------------------------------------

This is single pass fractional escape n=100*32:

This is single pass integer escape n=100:

As you can see the fractional escape is much better for the same number of iterations (100).

And finally nice multi pass (as a showoff) only 256 iterations and ~300x zoom:

versus single pass:

Some explanations on the modification:

I added sh fractional bits part to the counter (fixed point). So the max count is now n<<sh instead of just n. I also added n0 constant that lowers the error of fractional part of escape. The link suggest to use 2 iterations but 1 looks better I think (It also removes the i+1 increment from the logarithmic equation). The iteration loop is unchanged I just add the same n0 iterations after it and then compute the fractional escape mu and convert it to fixed point (as my shader outputs integer).

Multi pass is changed only on the CPU side code. It simply re-index the used indexes so there are no holes in them and recolor using visible spectra colors.

Here Demo:

这篇关于找不到按照我的目标为 Mandelbrot-set 上色的方法的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

06-06 20:11