本文介绍了基数R中的排列之间的Kendall tau距离(也称为气泡排序距离)的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
在不加载其他库的情况下,如何在R中计算两个排列之间的Kendall tau距离(也称为气泡排序距离)?
How can the Kendall tau distance (a.k.a. bubble-sort distance) between two permutations be calculated in R without loading additional libraries?
推荐答案
在阅读后,这里是一个O(n.log(n))实现,但是我怀疑可能会有更好的R解决方案.
Here is an O(n.log(n)) implementation scraped together after reading around, but I suspect there may be better R solutions.
inversionNumber <- function(x){
mergeSort <- function(x){
if(length(x) == 1){
inv <- 0
#printind(' base case')
} else {
n <- length(x)
n1 <- ceiling(n/2)
n2 <- n-n1
y1 <- mergeSort(x[1:n1])
y2 <- mergeSort(x[n1+1:n2])
inv <- y1$inversions + y2$inversions
x1 <- y1$sortedVector
x2 <- y2$sortedVector
i1 <- 1
i2 <- 1
while(i1+i2 <= n1+n2+1){
if(i2 > n2 || (i1 <= n1 && x1[i1] <= x2[i2])){ # ***
x[i1+i2-1] <- x1[i1]
i1 <- i1 + 1
} else {
inv <- inv + n1 + 1 - i1
x[i1+i2-1] <- x2[i2]
i2 <- i2 + 1
}
}
}
return (list(inversions=inv,sortedVector=x))
}
r <- mergeSort(x)
return (r$inversions)
}
.
kendallTauDistance <- function(x,y){
return(inversionNumber(order(x)[rank(y)]))
}
如果需要自定义平局,则必须在标记为# ***
If one needs custom tie-breaking one would have to fiddle with the last condition on the line marked # ***
用法:
> kendallTauDistance(c(1,2,4,3),c(2,3,1,4))
[1] 3
这篇关于基数R中的排列之间的Kendall tau距离(也称为气泡排序距离)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!