问题描述
我有一个由0
和1
组成的numpy数组.数组中每个1
序列代表一个事件的发生.我想用事件特定的ID号来标记与事件相对应的元素(其余的数组元素用np.nan
)我肯定可以在循环中完成,但是还有更多的"python-ish"(快速,矢量化)的方式呢?
I have a numpy array consisting of 0
's and 1
's. Each sequence of 1
's within the array stands for occurrence of one event. I want to label elements corresponding to an event with event-specific ID number (and the rest of array elements with np.nan
) I surely can do that in a loop, but is there more "python-ish" (fast, vectorized) way of doing it?
带有3个事件的numpy数组的示例,我想对其进行标记.
Example of numpy array with 3 events I want to label.
import numpy as np
arr = np.array([0,0,0,1,1,1,0,0,0,1,1,0,0,0,1,1,1,1])
some_func(arr)
# Expected output of some_func I search for:
# [np.nan,np.nan,np.nan,0,0,0,np.nan,np.nan,np.nan,1,1,np.nan,np.nan,np.nan,2,2,2,2]
推荐答案
您想贴上标签,幸运的是,有一个带有SciPy的标签, scipy.ndimage.label
-
You want to label and luckily, there's one with SciPy, scipy.ndimage.label
-
In [43]: from scipy.ndimage import label
In [47]: out = label(arr)[0]
In [48]: np.where(arr==0,np.nan,out-1)
Out[48]:
array([nan, nan, nan, 0., 0., 0., nan, nan, nan, 1., 1., nan, nan,
nan, 2., 2., 2., 2.])
另一个有一些NumPy工作的人-
Another with some NumPy work -
def rank_chunks(arr):
m = np.r_[False,arr.astype(bool)]
idx = np.flatnonzero(m[:-1] < m[1:])
id_ar = np.zeros(len(arr),dtype=float)
id_ar[idx[1:]] = 1
out = id_ar.cumsum()
out[arr==0] = np.nan
return out
另一个是masking
+ np.repeat
-
def rank_chunks_v2(arr):
m = np.r_[False,arr.astype(bool),False]
idx = np.flatnonzero(m[:-1] != m[1:])
l = idx[1::2]-idx[::2]
out = np.full(len(arr),np.nan,dtype=float)
out[arr!=0] = np.repeat(np.arange(len(l)),l)
return out
时间(将给定的输入平铺到1Mx)-
Timings (tiling given input to 1Mx) -
In [153]: arr_big = np.tile(arr,1000000)
In [154]: %timeit np.where(arr_big==0,np.nan,label(arr_big)[0]-1)
...: %timeit rank_chunks(arr_big)
...: %timeit rank_chunks_v2(arr_big)
1 loop, best of 3: 312 ms per loop
1 loop, best of 3: 263 ms per loop
1 loop, best of 3: 229 ms per loop
这篇关于快速,python式的方式在numpy数组中对1的块进行排名?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!