本文介绍了使用R中的fct_reorder根据值对因子进行重新排序的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我的数据:

structure(list(LoB = c("C", "C", "C", "A", 
"A", "B", "C", "A", "A", "C", 
"A", "B", "C", "B", "A", "C", "B", 
"A", "B", "C", "A", "B", "B", "A", 
"B", "C", "A", "B", "C", "B"), word = c("speed", 
"connection", "call", "bt", "reliable", "reliable", "reliable", 
"expensive", "cheaper", "uk", "customer", "customer", "customer", 
"network", "broadband", "broadband", "signal", "price", "price", 
"price", "poor", "poor", "ee", "service", "service", "service", 
"excellent", "excellent", "excellent", "coverage"), word_total = c(68L, 
46L, 44L, 3138L, 3479L, 906L, 71L, 6096L, 2967L, 39L, 10405L, 
1429L, 113L, 676L, 5193L, 73L, 868L, 8763L, 814L, 139L, 4708L, 
659L, 530L, 19185L, 2253L, 136L, 7180L, 1227L, 69L, 1453L), word_prop_by_total_feedbacks = c(0.0656370656370656, 
0.0444015444015444, 0.0424710424710425, 0.0343378635677237, 0.0380692885124636, 
0.101603678367164, 0.0685328185328185, 0.0667060600091918, 0.0324666797977808, 
0.0376447876447876, 0.113857702492723, 0.160255691376023, 0.109073359073359, 
0.075810250084109, 0.0568248965924759, 0.0704633204633205, 0.0973421554334417, 
0.0958899612632132, 0.0912863070539419, 0.134169884169884, 0.0515177379467314, 
0.0739037792979702, 0.0594370303913872, 0.209933687873416, 0.252663451833576, 
0.131274131274131, 0.0785678331473092, 0.137602332623079, 0.0666023166023166, 
0.16294717954469)), class = c("grouped_df", "tbl_df", "tbl", 
"data.frame"), row.names = c(NA, -30L), vars = "LoB", drop = TRUE, indices = list(
    c(3L, 4L, 7L, 8L, 10L, 14L, 17L, 20L, 23L, 26L), c(5L, 11L, 
    13L, 16L, 18L, 21L, 22L, 24L, 27L, 29L), c(0L, 1L, 2L, 6L, 
    9L, 12L, 15L, 19L, 25L, 28L)), group_sizes = c(10L, 10L, 
10L), biggest_group_size = 10L, labels = structure(list(LoB = c("A", 
"B", "C")), class = "data.frame", row.names = c(NA, -3L
), vars = "LoB", drop = TRUE, .Names = "LoB"), .Names = c("LoB", 
"word", "word_total", "word_prop_by_total_feedbacks"))

我正在尝试使用ggplot2进行绘图,但是fct_reorderdrlib::reorder_within(word, word_total, LoB)无法正常工作,并给我一个警告消息:Unequal factor levels: coercing to characterbinding character and factor vector, coercing into character vectorbinding character and factor vector, coercing into character vectorbinding character and factor vector, coercing into character vector

I am trying to plot using ggplot2 but fct_reorder and drlib::reorder_within(word, word_total, LoB) not working and giving me a warning message: Unequal factor levels: coercing to characterbinding character and factor vector, coercing into character vectorbinding character and factor vector, coercing into character vectorbinding character and factor vector, coercing into character vector

这是代码:

   mutate(word = drlib::reorder_within(word, word_total, LoB)) %>% 

OR

  mutate(word = forcats::fct_reorder(word, word_total)) %>%
  ggplot(aes(word, word_prop_by_total_feedbacks, fill = LoB)) +
  geom_col() +
#  drlib::scale_x_reordered()+
  facet_wrap(~ LoB, scales = "free") +
  coord_flip()

它不是按降序绘制.我想念什么?

it is not plotting in descending order. what am I missing?

更新:在mutate()之前缺少ungroup().谢谢大家

Update: Was missing ungroup() before mutate(). thanks all

推荐答案

与@austensen类似,但是对factor厌恶使用不同的方法.

Similar to @austensen, but using a different method for the factor averse.

您可以仅相应地group_byarrange,然后ungroup并创建索引.这样,您不必担心使用factor,但是您必须在scale_x_continuous中创建breakslabels.

You can just group_by and arrange accordingly, then ungroup and create and index. This way you don't have to worry about using factor, but you do have to create breaks and labels in scale_x_continuous.

library(ggplot2)
library(dplyr)

plot_data <- df %>% 
  group_by(LoB) %>% 
  arrange(word_total) %>% 
  ungroup() %>% 
  mutate(order = row_number())

ggplot(plot_data, aes(order, word_prop_by_total_feedbacks, fill = LoB)) +
  geom_col() +
  facet_wrap(~ LoB, scales = "free") +
  scale_x_continuous(breaks = plot_data$order, labels = plot_data$word) +
  coord_flip()

这篇关于使用R中的fct_reorder根据值对因子进行重新排序的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-25 03:31