问题描述
我有一个具有多个级别的数据框,例如:
I have a dataframe with multiple levels, eg:
idx = pd.MultiIndex.from_product((['foo', 'bar'], ['one', 'five', 'three' 'four']),
names=['first', 'second'])
df = pd.DataFrame({'A': [np.nan, 12, np.nan, 11, 16, 12, 11, np.nan]}, index=idx).dropna().astype(int)
A
first second
foo five 12
four 11
bar one 16
five 12
three 11
我想使用标题为second
的索引级别创建一个新列,以便获取
I want to create a new column using the index level titled second
, so that I get
A B
first second
foo five 12 five
four 11 four
bar one 16 one
five 12 five
three 11 three
我可以通过重置索引,复制列,然后重新应用来做到这一点,但这似乎更为合理.
I can do this by resetting the index, copying the column, then re-applying, but that seems more round-about.
我尝试了df.index.levels[1]
,但是会创建一个排序列表,但不会保留顺序.
I tried df.index.levels[1]
, but that creates a sorted list, it doesn't preserve the order.
如果它是一个单一索引,我会使用df.index
,但是要在一个创建元组列的多重索引中使用.
If it was a single index, I would use df.index
but in a multiindex that creates a column of tuples.
如果在其他地方解决了此问题,请分享,因为我没有运气来搜索stackoverflow存档.
If this is resolved elsewhere, please share as I haven't had any luck searching the stackoverflow archives.
推荐答案
df['B'] = df.index.get_level_values(level=1) # Zero based indexing.
# df['B'] = df.index.get_level_values(level='second') # This also works.
>>> df
A B
first second
foo one 12 one
two 11 two
bar one 16 one
two 12 two
three 11 three
这篇关于 pandas :获得系列的多索引水平的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!