问题描述
所以我有一些手机加速度计数据,我想基本制作一个关于手机运动的视频。因此,我使用matplotlib创建了数据的3D图形: from mpl_toolkits.mplot3d import Axes3D
import matplotlib。 pyplot as plt
import pandas as pd
import pickle
def pickleLoad(pickleFile):
pkl_file = open(pickleFile,'rb')
data = pickle.load (pkl_file)
pkl_file.close()
返回数据
data = pickleLoad('/ Users / ryansaxe / Desktop / kaggle_parkinsons / accelerometry / LILY_dataframe')
data = data.reset_index (drop = True)
fig = plt.figure()
ax = fig.add_subplot(111,projection ='3d')
xs = data ['x.mean']
ys = data ['y.mean']
zs = data ['z.mean']
ax.scatter(xs,ys,zs)
ax.set_xlabel('X标签')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
现在时间很重要,实际上也是我一次只能看到一个点的因素,因为时间也是一个因素,它让我看着程序
我能做些什么来使它成为实时更新图表?
只有我能想到的是有一个循环遍历并逐行生成图形,但是这会打开很多文件,因为我有数百万行,所以它会被疯狂。
那么我该如何创建一个实时更新图表?
这里是一个裸机例子,它可以尽快更新:
import pylab as plt
import numpy as np
X = np.linspace(0,2,1000)
Y = X ** 2 + np.random.random(X.shape)
plt.ion()
graph = plt.plot(X,Y)[0]
而真:
Y = X ** 2 + np.random.random(X.shape)
graph.set_ydata(Y)
plt.draw()
诀窍是 not 继续创建新图形,因为这将继续消耗内存,但要更改现有plo上的x,y,z数据吨。使用 .ion()
和 .draw()
设置画布进行更新。
附录:@Kelsey以下排名很高的评论指出:
So I have some phone accelerometry data and I would like to basically make a video of what the motion of the phone looked like. So I used matplotlib to create a 3D graph of the data:
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import pandas as pd
import pickle
def pickleLoad(pickleFile):
pkl_file = open(pickleFile, 'rb')
data = pickle.load(pkl_file)
pkl_file.close()
return data
data = pickleLoad('/Users/ryansaxe/Desktop/kaggle_parkinsons/accelerometry/LILY_dataframe')
data = data.reset_index(drop=True)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
xs = data['x.mean']
ys = data['y.mean']
zs = data['z.mean']
ax.scatter(xs, ys, zs)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
Now time is important and is actually also a factor that I only see one point at a time because time is also a factor and it lets me watch the progression of the accelerometry data!
What can I do with this to make it a live updating graph?
Only thing I can think of is to have a loop that goes through row by row and makes the graph from the row, but that will open so many files that it would be insane because I have millions of rows.
So how can I create a live updating graph?
Here is a bare-bones example that updates as fast as it can:
import pylab as plt
import numpy as np
X = np.linspace(0,2,1000)
Y = X**2 + np.random.random(X.shape)
plt.ion()
graph = plt.plot(X,Y)[0]
while True:
Y = X**2 + np.random.random(X.shape)
graph.set_ydata(Y)
plt.draw()
The trick is not to keep creating new graphs as this will continue to eat up memory, but to change the x,y,z-data on an existing plot. Use .ion()
and .draw()
setup the canvas for updating like this.
Addendum: A highly ranked comment below by @Kelsey notes that:
这篇关于使用matplotlib进行实时更新的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!