问题描述
我正在玩列表理解,并且在另一个站点上遇到了这个小片段:
I'm playing around with list comprehensions and I came across this little snippet on another site:
return ''.join([`num` for num in xrange(loop_count)])
我花了几分钟的时间尝试通过键入来复制功能(通过键入),然后才意识到`num`
位将其破坏.
I spent a few minutes trying to replicate the function (by typing) before realising the `num`
bit was breaking it.
将这些语句括在这些字符中有什么作用?从我所看到的相当于str(num).但是当我计时的时候:
What does enclosing a statement in those characters do? From what I can see it is the equivalent of str(num). But when I timed it:
return ''.join([str(num) for num in xrange(10000000)])
需要4.09秒,而:
return ''.join([`num` for num in xrange(10000000)])
需要2.43秒.
两者都给出相同的结果,但结果要慢得多.这是怎么回事?
Both give identical results but one is a lot slower. What is going on here?
编辑:奇怪的是... repr()
给出的结果比`num`
稍慢. 2.99秒和2.43秒.使用Python 2.6(尚未尝试过3.0).
Oddly... repr()
gives slightly slower results than `num`
. 2.99s vs 2.43s. Using Python 2.6 (haven't tried 3.0 yet).
推荐答案
反引号是repr()
的不推荐使用的别名.不再使用它们,该语法已在Python 3.0中删除.
Backticks are a deprecated alias for repr()
. Don't use them any more, the syntax was removed in Python 3.0.
在2.x版中,使用反引号似乎比使用repr(num)
或num.__repr__()
更快.我猜是因为分别在全局名称空间(对于repr
)或对象的名称空间(对于__repr__
)中需要附加的字典查找.
Using backticks seems to be faster than using repr(num)
or num.__repr__()
in version 2.x. I guess it's because additional dictionary lookup is required in the global namespace (for repr
), or in the object's namespace (for __repr__
), respectively.
使用dis
模块证明了我的假设:
Using the dis
module proves my assumption:
def f1(a):
return repr(a)
def f2(a):
return a.__repr__()
def f3(a):
return `a`
拆解节目:
>>> import dis
>>> dis.dis(f1)
3 0 LOAD_GLOBAL 0 (repr)
3 LOAD_FAST 0 (a)
6 CALL_FUNCTION 1
9 RETURN_VALUE
>>> dis.dis(f2)
6 0 LOAD_FAST 0 (a)
3 LOAD_ATTR 0 (__repr__)
6 CALL_FUNCTION 0
9 RETURN_VALUE
>>> dis.dis(f3)
9 0 LOAD_FAST 0 (a)
3 UNARY_CONVERT
4 RETURN_VALUE
f1
涉及针对repr
的全局查找,f2
涉及针对__repr__
的属性查找,而反引号运算符是在单独的操作码中实现的.由于没有字典查找(LOAD_GLOBAL
/LOAD_ATTR
)和函数调用(CALL_FUNCTION
)的开销,因此反引号会更快.
f1
involves a global lookup for repr
, f2
an attribute lookup for __repr__
, whereas the backtick operator is implemented in a separate opcode. Since there is no overhead for dictionary lookup (LOAD_GLOBAL
/LOAD_ATTR
) nor for function calls (CALL_FUNCTION
), backticks are faster.
我猜想Python专家认为对repr()
进行单独的低级操作是不值得的,并且同时repr()
和反引号都违反了该原理
I guess that the Python folks decided that having a separate low-level operation for repr()
is not worth it, and having both repr()
and backticks violates the principle
因此该功能已在Python 3.0中删除.
so the feature was removed in Python 3.0.
这篇关于反引号对python解释器意味着什么:`num`的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!