本文介绍了n维FFT的计算复杂度的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
在每个维上有m个点的n维FFT的计算复杂度是多少?
What is the computational complexity of the n-dimensional FFT with m points along each dimension?
推荐答案
对于一维FFT,它是O(m log m)
.
For a 1D FFT it's O(m log m)
.
对于2D FFT,您必须在每个轴上执行m x 1D FFT,因此O(2 m^2 log m)
= O(m^2 log m)
.
For a 2D FFT you have to do m x 1D FFTs in each axis so that's O(2 m^2 log m)
= O(m^2 log m)
.
现在来我这里转机还为时过早n >= 3
,但我想可能是:
It's too early in the morning here to get my head round n >= 3
but I'm guessing it's probably:
O(m^n log m)
这篇关于n维FFT的计算复杂度的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!