问题描述
Wikipedia的小波文章包含以下文本:
Wikipedia's Wavelet article contains this text:
这是否意味着还存在一种类似FFT的算法,该算法使用对数分频而不是线性分频?也是O(N)吗?对于许多应用程序,这显然是更可取的.
Does this imply that there's also an FFT-like algorithm that uses a logarithmic division of frequency instead of linear? Is it also O(N)? This would obviously be preferable for a lot of applications.
推荐答案
是.是的.不.
它称为对数傅立叶变换.它具有O(n)时间.但是,它对于随域/横坐标增加而缓慢衰减的功能很有用.
It is called the Logarithmic Fourier Transform. It has O(n) time. However it is useful for functions which decay slowly with increasing domain/abscissa.
请参考维基百科的文章:
Referring back the wikipedia article:
因此,如果只能在时间(或空间,对横坐标进行解释)中进行局部定位,则小波(或离散余弦变换)是一种合理的方法.但是,如果您需要不断进行下去,那么就需要进行傅立叶变换.
So if you can be localized only in time (or space, pick your interpretation of the abscissa) then Wavelets (or discrete cosine transform) are a reasonable approach. But if you need to go on and on and on, then you need the fourier transform.
在 http://homepages.dias.ie/~上了解有关LFT的更多信息. ajones/publications/28.pdf
这里是摘要:
这篇关于是否有使用对数分频的FFT?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!