本文介绍了python中的ode集成与mathematica结果的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

修改:因此,我发现NDSolve for ODE正在使用Runge Kutta来求解方程.如何在我的python代码上使用Runge Kutta方法来解决下面的ODE?

So I found out that NDSolve for ODE is using Runge Kutta to solve the equations.How can I use the Runge Kutta method on my python code to solve the ODE I have below?

从我在带有浮动条目的文本文件中的帖子中,我能够确定pythonmathematica立即开始向负6的容差为10.

From my post on text files with float entries, I was able to determine that python and mathematica immediately start diverging with a tolerance of 10 to the negative 6.

结束编辑

在过去的几个小时中,我一直在试图弄清为什么我在Mathematica和Python中的解决方案与5000有所不同.

For last few hours, I have been trying to figure out why my solutions in Mathematica and Python differ by 5000 something km.

我被认为在模拟飞行时间超过数百万秒时,一个程序具有更高的容错能力.

I am led to believe one program has a higher error tolerance when simulating over millions of seconds in flight time.

我的问题是哪个程序更准确,如果不是python,如何调整精度?

My question is which program is more accurate, and if it isn't python, how can I adjust the precision?

使用Mathematica,我距L4不到10公里,而与Python一样,我距5947公里.

With Mathematica, I am less than 10km away from L4 where as with Python I am 5947 km away.

下面列出了代码:

Python

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from numpy import linspace
from scipy.optimize import brentq

me = 5.974 * 10 ** (24)  #  mass of the earth
mm = 7.348 * 10 ** (22)  #  mass of the moon
G = 6.67259 * 10 ** (-20)  #  gravitational parameter
re = 6378.0  #  radius of the earth in km
rm = 1737.0  #  radius of the moon in km
r12 = 384400.0  #  distance between the CoM of the earth and moon
d = 300 #  distance the spacecraft is above the Earth
pi1 = me / (me + mm)
pi2 = mm / (me + mm)
mue = 398600.0  #  gravitational parameter of earth km^3/sec^2
mum = G * mm  #  grav param of the moon
mu = mue + mum
omega = np.sqrt(mu / (r12 ** 3))

nu = -np.pi / 4  #  true anomaly  pick yourself

xl4 = r12 / 2 - 4671  #  x location of L4
yl4 = np.sqrt(3) / 2 * r12  #  y

print("The location of L4 is", xl4, yl4)

#  Solve for Jacobi's constant
def f(C):
    return (omega ** 2 * (xl4 ** 2 + yl4 ** 2) + 2 * mue / r12 + 2 * mum / r12
            + 2 * C)


c = brentq(f, -5, 0)

print("Jacobi's constant is",c)

x0 = (re + 200) * np.cos(nu) - pi2 * r12  #  x location of the satellite
y0 = (re + 200) * np.sin(nu)  #  y location

print("The satellite's initial position is", x0, y0)

vbo = (np.sqrt(omega ** 2 * (x0 ** 2 + y0 ** 2) + 2 * mue /
               np.sqrt((x0 + pi2 * r12) ** 2 + y0 ** 2) + 2 * mum /
               np.sqrt((x0 - pi1 * r12) ** 2 + y0 ** 2) + 2 * -1.21))

print("Burnout velocity is", vbo)

gamma = 0.4678 * np.pi / 180  #  flight path angle pick yourself

vx = vbo * (np.sin(gamma) * np.cos(nu) - np.cos(gamma) * np.sin(nu))
#  velocity of the bo in the x direction
vy = vbo * (np.sin(gamma) * np.sin(nu) + np.cos(gamma) * np.cos(nu))
#  velocity of the bo in the y direction

print("The satellite's initial velocity is", vx, vy)

#  r0 = [x, y, 0]
#  v0 = [vx, vy, 0]
u0 = [x0, y0, 0, vx, vy, 0]


def deriv(u, dt):
return [u[3],  #  dotu[0] = u[3]
        u[4],  #  dotu[1] = u[4]
        u[5],  #  dotu[2] = u[5]
        (2 * omega * u[4] + omega ** 2 * u[0] - mue * (u[0] + pi2 * r12) /
         np.sqrt(((u[0] + pi2 * r12) ** 2 + u[1] ** 2) ** 3) - mum *
         (u[0] - pi1 * r12) /
         np.sqrt(((u[0] - pi1 * r12) ** 2 + u[1] ** 2) ** 3)),
        #  dotu[3] = that
        (-2 * omega * u[3] + omega ** 2 * u[1] - mue * u[1] /
         np.sqrt(((u[0] + pi2 * r12) ** 2 + u[1] ** 2) ** 3) - mum * u[1] /
         np.sqrt(((u[0] - pi1 * r12) ** 2 + u[1] ** 2) ** 3)),
        #  dotu[4] = that
        0]  #  dotu[5] = 0


dt = np.linspace(0.0, 6.0 * 86400.0, 2000000.0)  #  secs to run the simulation
u = odeint(deriv, u0, dt)
x, y, z, x2, y2, z2 = u.T

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(x, y, z, color = 'r')
#  adding the Lagrange point
phi = np.linspace(0, 2 * np.pi, 100)
theta = np.linspace(0, np.pi, 100)
xm = 2000 * np.outer(np.cos(phi), np.sin(theta)) + xl4
ym = 2000 * np.outer(np.sin(phi), np.sin(theta)) + yl4
zm = 2000 * np.outer(np.ones(np.size(phi)), np.cos(theta))
ax.plot_surface(xm, ym, zm, color = '#696969', linewidth = 0)
ax.auto_scale_xyz([-8000, 385000], [-8000, 385000], [-8000, 385000])
#  adding the earth
phi = np.linspace(0, 2 * np.pi, 100)
theta = np.linspace(0, np.pi, 100)
xm = 2000 * np.outer(np.cos(phi), np.sin(theta))
ym = 2000 * np.outer(np.sin(phi), np.sin(theta))
zm = 2000 * np.outer(np.ones(np.size(phi)), np.cos(theta))
ax.plot_surface(xm, ym, zm, color = '#696969', linewidth = 0)
ax.auto_scale_xyz([-8000, 385000], [-8000, 385000], [-8000, 385000])

plt.show()

#  The code below finds the distance between path and l4
my_x, my_y, my_z = (xl4, yl4, 0.0)

delta_x = x - my_x
delta_y = y - my_y
delta_z = z - my_z
distance = np.array([np.sqrt(delta_x ** 2 + delta_y ** 2 + delta_z ** 2)])

minimum = np.amin(distance)

print("Closet approach to L4 is", minimum)

Mathematica

ClearAll["Global`*"];
me = 5.974*10^(24);
mm = 7.348*10^(22);
G = 6.67259*10^(-20);
re = 6378;
rm = 1737;
r12 = 384400;

\[Pi]1 = me/(me + mm);
\[Pi]2 = mm/(me + mm);
M = me + mm;
\[Mu]1 = 398600;
\[Mu]2 = G*mm;
\[Mu] = \[Mu]1 + \[Mu]2;
\[CapitalOmega] = Sqrt[\[Mu]/r12^3];
\[Nu] = -\[Pi]/4;

xl4 = 384400/2 - 4671;
yl4 = Sqrt[3]/2*384400 // N;

Solve[\[CapitalOmega]^2*(xl4^2 + yl4^2) + 2 \[Mu]1/r12 +
   2 \[Mu]2/r12 + 2*C == 0, C]
x = (re + 200)*Cos[\[Nu]] - \[Pi]2*r12 // N
y = (re + 200)*Sin[\[Nu]] // N

{{C -> -1.56824}}

-19.3098

-4651.35

vbo = Sqrt[\[CapitalOmega]^2*((x)^2 + (y)^2) +
   2*\[Mu]1/Sqrt[(x + \[Pi]2*r12)^2 + (y)^2] +
   2*\[Mu]2/Sqrt[(x - \[Pi]1*r12)^2 + (y)^2] + 2*(-1.21)]

10.8994

\[Gamma] = 0.4678*Pi/180;
vx = vbo*(Sin[\[Gamma]]*Cos[\[Nu]] - Cos[\[Gamma]]*Sin[\[Nu]]);
vy = vbo*(Sin[\[Gamma]]*Sin[\[Nu]] + Cos[\[Gamma]]*Cos[\[Nu]]);

r0 = {x, y, 0};
v0 = {vx, vy, 0}

{7.76974, 7.64389, 0}

s = NDSolve[{x1''[t] -
      2*\[CapitalOmega]*x2'[t] - \[CapitalOmega]^2*
       x1[t] == -\[Mu]1/((Sqrt[(x1[t] + \[Pi]2*r12)^2 +
             x2[t]^2])^3)*(x1[t] + \[Pi]2*
          r12) - \[Mu]2/((Sqrt[(x1[t] - \[Pi]1*r12)^2 +
             x2[t]^2])^3)*(x1[t] - \[Pi]1*r12),
    x2''[t] +
      2*\[CapitalOmega]*x1'[t] - \[CapitalOmega]^2*
       x2[t] == -\[Mu]1/(Sqrt[(x1[t] + \[Pi]2*r12)^2 + x2[t]^2])^3*
       x2[t] - \[Mu]2/(Sqrt[(x1[t] - \[Pi]1*r12)^2 + x2[t]^2])^3*
       x2[t], x3''[t] == 0, x1[0] == r0[[1]], x1'[0] == v0[[1]],
    x2[0] == r0[[2]], x2'[0] == v0[[2]], x3[0] == r0[[3]],
    x3'[0] == v0[[3]]}, {x1, x2, x3}, {t, 0, 1000000}];

ParametricPlot3D[
 Evaluate[{x1[t], x2[t], x3[t]} /. s], {t, 0, 10*24*3600},
 PlotStyle -> {Red, Thick}]

g1 = ParametricPlot3D[
   Evaluate[{x1[t], x2[t], x3[t]} /. s], {t, 0, 5.75*3600*24},
   PlotStyle -> {Red},
   PlotRange -> {{-10000, 400000}, {-10000, 400000}}];
g2 = Graphics3D[{Blue, Opacity[0.6], Sphere[{-4671, 0, 0}, re]}];
g3 = Graphics3D[{Green, Opacity[0.6], Sphere[{379729, 0, 0}, rm]}];
g4 = Graphics3D[{Black, Sphere[{xl4, yl4, 0}, 2000]}];
Show[g2, g1, g3, g4, Boxed -> False]


(*XYdata=Flatten[Table[Evaluate[{x1[t],x2[t],x3[t]}/.s],{t,5.5*24*\
3600,5.78*24*3600,1}],1];
X1Y1data=Flatten[Table[Evaluate[{x1'[t],x2'[t],x3'[t]}/.s],{t,5.5*24*\
3600,5.78*24*3600,1}],1];
SetDirectory[NotebookDirectory[]];
Export["OrbitData.txt",XYdata,"CSV"];
Export["OrbVeloc.txt",X1Y1data,"CSV"];*)

推荐答案

如果此时您的问题已减少到只想使用Runge-Kutta,则可以例如替换以下行:

If at this point your problem has reduced to just wanting to use Runge-Kutta, you can for example replace this line:

u = odeint(deriv, u0, dt)

具有这样的内容:

#reverse the order of arguments
def deriv2(t,u):
    return deriv(u,t)

# initialize a 4th order Runge-Kutta ODE solver
solver = ode(deriv2).set_integrator('dopri5')
solver.set_initial_value(u0)
u = np.empty((len(dt), 6))
u[0,:] = u0
for ii in range(1,len(dt)):
    u[ii] = solver.integrate(dt[ii])

(+显然将odeint导入替换为ode).

(+obviously replace the odeint import with ode).

请注意,这种ODE的速度要慢得多.

Note that this is significantly slower for this type of ODE.

要使用dop853,请使用Solver.set_integrator('dop853').

To use the dop853, use solver.set_integrator('dop853').

这篇关于python中的ode集成与mathematica结果的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-14 23:01