2 ^ n大O的示例

扫码查看
本文介绍了2 ^ n大O的示例的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

因此,我可以想象一下什么是算法,其复杂度为n ^ c,只是嵌套的for循环数。

 为(var i = 0; i  for(var j = 0 ; j< dataset.len; j ++){
//用i和j做东西
}
}

日志每次都会将数据集分成两部分,二进制搜索会这样做(不完全确定此代码看起来像什么)。



但是c ^ n或更具体地是2 ^ n的算法的简单示例是什么?O(2 ^ n)是基于遍历数据的循环吗?还是如何拆分数据?或者完全是其他东西?

解决方案

运行时间为O(2 ^ N)的算法通常是递归算法,通过递归求解来解决大小为N的问题两个较小的问题,大小为N-1。



例如,该程序打印出解决伪造的N个磁盘的著名的河内之塔问题所需的所有动作。 -code

  voidsolve_hanoi(int N,字符串from_peg,字符串to_peg,字符串spare_peg)
{
if(N< 1){
return;
}
if(N> 1){
resolve_hanoi(N-1,from_peg,spare_peg,to_peg);
}
打印从 + from_peg +移至 + to_peg;
if(N> 1){
solve_hanoi(N-1,spare_peg,to_peg,from_peg);
}
}

让T(N)为花费的时间N个磁盘。



我们有:

  T(1)=当N> 1 

T(N)= O(1)+ 2 * T(N-1) $ p>

如果重复扩展上一个学期,您将得到:

  T (N)= 3 * O(1)+ 4 * T(N-2)
T(N)= 7 * O(1)+ 8 * T(N-3)
...
T(N)=(2 ^(N-1)-1)* O(1)+(2 ^(N-1))* T(1)
T(N)=( 2 ^ N-1)* O(1)
T(N)= O(2 ^ N)

要真正弄清楚这一点,您只需要知道递归关系中的某些模式会导致指数结果。通常 T(N)= ... + C * T(N-1),其中 C> 1 表示O(x ^ N)。请参阅:




So I can picture what an algorithm is that has a complexity of n^c, just the number of nested for loops.

for (var i = 0; i < dataset.len; i++ {
    for (var j = 0; j < dataset.len; j++) {
        //do stuff with i and j
    }
}

Log is something that splits the data set in half every time, binary search does this (not entirely sure what code for this looks like).

But what is a simple example of an algorithm that is c^n or more specifically 2^n. Is O(2^n) based on loops through data? Or how data is split? Or something else entirely?

解决方案

Algorithms with running time O(2^N) are often recursive algorithms that solve a problem of size N by recursively solving two smaller problems of size N-1.

This program, for instance prints out all the moves necessary to solve the famous "Towers of Hanoi" problem for N disks in pseudo-code

void solve_hanoi(int N, string from_peg, string to_peg, string spare_peg)
{
    if (N<1) {
        return;
    }
    if (N>1) {
        solve_hanoi(N-1, from_peg, spare_peg, to_peg);
    }
    print "move from " + from_peg + " to " + to_peg;
    if (N>1) {
        solve_hanoi(N-1, spare_peg, to_peg, from_peg);
    }
}

Let T(N) be the time it takes for N disks.

We have:

T(1) = O(1)
and
T(N) = O(1) + 2*T(N-1) when N>1

If you repeatedly expand the last term, you get:

T(N) = 3*O(1) + 4*T(N-2)
T(N) = 7*O(1) + 8*T(N-3)
...
T(N) = (2^(N-1)-1)*O(1) + (2^(N-1))*T(1)
T(N) = (2^N - 1)*O(1)
T(N) = O(2^N)

To actually figure this out, you just have to know that certain patterns in the recurrence relation lead to exponential results. Generally T(N) = ... + C*T(N-1) with C > 1means O(x^N). See:

https://en.wikipedia.org/wiki/Recurrence_relation

这篇关于2 ^ n大O的示例的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-23 00:39
查看更多