本文介绍了通过考虑r(2)中的分组Q矩阵来操纵字符向量的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试基于 Group 变量 item.map 编写代码,其中包含以下项信息:

I am trying to write code based on a Group variable, item.map that has item information that includes an q-matrix showing which item is associated with which group.

    Group <- c(1,2,3,4)
item.map <- data.frame(
  item.id = c(21,41,61,72),
  group.1 = c(1,1,1,0),
  group.2 = c(0,1,0,1),
  group.3 = c(1,1,1,0),
  group.4 = c(0,0,0,1))

> item.map
  item.id group.1 group.2 group.3 group.4
1      21       1       0       1       0
2      41       1       1       1       0
3      61       1       0       1       0
4      72       0       1       0       1

在此 item.map中 group.1有3个项目,而group.2有2个项目, group.3 有3个项目,而 group.4 有1个项目。使用此item.map,我想在下面的代码块中分配这些项目,但无法插入 item.map

In this item.map group.1 had 3 items while group.2 has two items, group.3 has three and group.4 has 1 item.. Using this item.map I wanted to assign those items within the chunk of code below but I was not able to plug the item.map information.

   OUTPUT <- as.data.frame(c())
for(i in 1:length(item.map$item.id)) {
 
  for(k in 0:(length(Group))) { # here with the length(State) I gained the sequqnece of 0,1,2,3
    output <- paste0("Equal = ",paste0(paste("(", "G1, ",item.map$item.id[i], ","," Slope[",k,"])",collapse=", ", sep=""),", ",
                                        paste( "(", "G2, ",item.map$item.id[i], ","," Slope[",k,"])",collapse=", ", sep=""),
                                        ";"))
    OUTPUT <- c(OUTPUT, output)
    
  }
}


[1] "Equal = (G1, 21, Slope[0]), (G2, 21, Slope[0]), (G3, 21, Slope[0]), (G4, 21, Slope[0]);"
[1] "Equal = (G1, 21, Slope[1]), (G2, 21, Slope[1]), (G3, 21, Slope[1]), (G4, 21, Slope[1]);"
[1] "Equal = (G1, 21, Slope[2]), (G2, 21, Slope[2]), (G3, 21, Slope[2]), (G4, 21, Slope[2]);"
[1] "Equal = (G1, 21, Slope[3]), (G2, 21, Slope[3]), (G3, 21, Slope[3]), (G4, 21, Slope[3]);"
[1] "Equal = (G1, 21, Slope[4]), (G2, 21, Slope[4]), (G3, 21, Slope[4]), (G4, 21, Slope[4]);"
[1] "Equal = (G1, 41, Slope[0]), (G2, 41, Slope[0]), (G3, 41, Slope[0]), (G4, 41, Slope[0]);"
[1] "Equal = (G1, 41, Slope[1]), (G2, 41, Slope[1]), (G3, 41, Slope[1]), (G4, 41, Slope[1]);"
[1] "Equal = (G1, 41, Slope[2]), (G2, 41, Slope[2]), (G3, 41, Slope[2]), (G4, 41, Slope[2]);"
[1] "Equal = (G1, 41, Slope[3]), (G2, 41, Slope[3]), (G3, 41, Slope[3]), (G4, 41, Slope[3]);"
[1] "Equal = (G1, 41, Slope[4]), (G2, 41, Slope[4]), (G3, 41, Slope[4]), (G4, 41, Slope[4]);"
[1] "Equal = (G1, 61, Slope[0]), (G2, 61, Slope[0]), (G3, 61, Slope[0]), (G4, 61, Slope[0]);"
[1] "Equal = (G1, 61, Slope[1]), (G2, 61, Slope[1]), (G3, 61, Slope[1]), (G4, 61, Slope[1]);"
[1] "Equal = (G1, 61, Slope[2]), (G2, 61, Slope[2]), (G3, 61, Slope[2]), (G4, 61, Slope[2]);"
[1] "Equal = (G1, 61, Slope[3]), (G2, 61, Slope[3]), (G3, 61, Slope[3]), (G4, 61, Slope[3]);"
[1] "Equal = (G1, 61, Slope[4]), (G2, 61, Slope[4]), (G3, 61, Slope[4]), (G4, 61, Slope[4]);"
[1] "Equal = (G1, 72, Slope[0]), (G2, 72, Slope[0]), (G3, 72, Slope[0]), (G4, 72, Slope[0]);"
[1] "Equal = (G1, 72, Slope[1]), (G2, 72, Slope[1]), (G3, 72, Slope[1]), (G4, 72, Slope[1]);"
[1] "Equal = (G1, 72, Slope[2]), (G2, 72, Slope[2]), (G3, 72, Slope[2]), (G4, 72, Slope[2]);"
[1] "Equal = (G1, 72, Slope[3]), (G2, 72, Slope[3]), (G3, 72, Slope[3]), (G4, 72, Slope[3]);"
[1] "Equal = (G1, 72, Slope[4]), (G2, 72, Slope[4]), (G3, 72, Slope[4]), (G4, 72, Slope[4]);"

因此,在所需的输出中, G1 不应该包含项目 72 和G2不应包含项目 21 61 的信息在分组块中。
另外,我无法对 G1进行排序。和 G2;在我的代码中。考虑到 G1 G2 G3 G4

So, in the desired output, G1 should not have item 72 and G2 should not have items 21 and 61 information in the grouping chunk.Also, I was not able to sequence "G1" and "G2" in my code. Is there a way to combine these two lines into one considering G1, G2, G3 and G4?

output <- paste0("Equal = ",paste0(paste("(", "G1, ",item.map$item.id[i], ","," Slope[",k,"])",collapse=", ", sep=""),", ",
                                       paste("(", "G2, ",item.map$item.id[i], ","," Slope[",k,"])",collapse=", ", sep=""),", ",
                                       paste("(", "G3, ",item.map$item.id[i], ","," Slope[",k,"])",collapse=", ", sep=""),", ",
                                       paste( "(", "G4, ",item.map$item.id[i], ","," Slope[",k,"])",collapse=", ", sep=""),
                                       
                                       ";"))

所需的输出为:

[1] "Equal = (G1, 21, Slope[0]), (G3, 21, Slope[0]);"
[1] "Equal = (G1, 21, Slope[1]), (G3, 21, Slope[1]);"
[1] "Equal = (G1, 21, Slope[2]), (G3, 21, Slope[2]);"
[1] "Equal = (G1, 21, Slope[3]), (G3, 21, Slope[3]);"
[1] "Equal = (G1, 21, Slope[4]), (G3, 21, Slope[4]);"
[1] "Equal = (G1, 41, Slope[0]), (G2, 41, Slope[0]), (G3, 41, Slope[0]);"
[1] "Equal = (G1, 41, Slope[1]), (G2, 41, Slope[1]), (G3, 41, Slope[1]);"
[1] "Equal = (G1, 41, Slope[2]), (G2, 41, Slope[2]), (G3, 41, Slope[2]);"
[1] "Equal = (G1, 41, Slope[3]), (G2, 41, Slope[3]), (G3, 41, Slope[3]);"
[1] "Equal = (G1, 41, Slope[4]), (G2, 41, Slope[4]), (G3, 41, Slope[4]);"
[1] "Equal = (G1, 61, Slope[0]), (G3, 61, Slope[0]);"
[1] "Equal = (G1, 61, Slope[1]), (G3, 61, Slope[1]);"
[1] "Equal = (G1, 61, Slope[2]), (G3, 61, Slope[2]);"
[1] "Equal = (G1, 61, Slope[3]), (G3, 61, Slope[3]);"
[1] "Equal = (G1, 61, Slope[4]), (G3, 61, Slope[4]);"
[1] "Equal = (G2, 72, Slope[0]), (G4, 72, Slope[0]);"
[1] "Equal = (G2, 72, Slope[1]), (G4, 72, Slope[1]);"
[1] "Equal = (G2, 72, Slope[2]), (G4, 72, Slope[2]);"
[1] "Equal = (G2, 72, Slope[3]), (G4, 72, Slope[3]);"
[1] "Equal = (G2, 72, Slope[4]), (G4, 72, Slope[4]);"

有人有什么想法吗?
谢谢

Does anyone have any ideas?Thanks

推荐答案

这里是 tidyverse 的一种选择我们遍历组列名称,选择来自列表,重命名到'G1','G2',然后执行交叉扩展数据集, filter 基于逻辑组列,使用 glue_data (来自 grlue )和展平 列表向量

Here is one option with tidyverse where we loop over the 'group' column names, select those from 'item.map in a list, rename it to 'G1', 'G2', then do crossing to expand the dataset, filter based on the logical group column, create the expression with glue_data (from grlue) and flatten the list to a vector

library(dplyr)
library(purrr)
library(stringr)
out <- map(c('group.1', 'group.2'), 
      ~ item.map %>% 
          select(item.id, .x) %>% 
          rename_at(.x, ~ str_c('G', str_remove(., "\\D+"))) %>% 
          crossing(k = 0:2) %>%
          filter(across(starts_with('G'), as.logical)) %>% 
          glue::glue_data("Equal = ({names(.)[2]}, {item.id}, Slope[{k}]);")%>%
          as.character) %>%
    flatten_chr

-输出

out
#[1] "Equal = (G1, 21, Slope[0]);" "Equal = (G1, 21, Slope[1]);" "Equal = (G1, 21, Slope[2]);" "Equal = (G1, 41, Slope[0]);"
#[5] "Equal = (G1, 41, Slope[1]);" "Equal = (G1, 41, Slope[2]);" "Equal = (G1, 61, Slope[0]);" "Equal = (G1, 61, Slope[1]);"
#[9] "Equal = (G1, 61, Slope[2]);" "Equal = (G2, 41, Slope[0]);" "Equal = (G2, 41, Slope[1]);" "Equal = (G2, 41, Slope[2]);"
#[13] "Equal = (G2, 72, Slope[0]);" "Equal = (G2, 72, Slope[1]);" "Equal = (G2, 72, Slope[2]);"

如果我们希望将两个都为1的分组,

If we want to group those that are 1 in both groups,

i1 <- ave(seq_along(out), sub("G\\d+", "", out), FUN = length)

 out[i1 > 1] <- ave(out[i1 > 1], sub("Equal = \\(G\\d+", "", out[i1 > 1]), 
      FUN = function(x) {
          x[1] <- sub(";", "", x[1])
          paste(x[1], sub("Equal = ", "", x[2]), sep =", ")
  })
out1 <- unique(out)
out1

#[1] "Equal = (G1, 21, Slope[0]);"                     "Equal = (G1, 21, Slope[1]);"                    
#[3] "Equal = (G1, 21, Slope[2]);"                     "Equal = (G1, 41, Slope[0]), (G2, 41, Slope[0]);"
#[5] "Equal = (G1, 41, Slope[1]), (G2, 41, Slope[1]);" "Equal = (G1, 41, Slope[2]), (G2, 41, Slope[2]);"
#[7] "Equal = (G1, 61, Slope[0]);"                     "Equal = (G1, 61, Slope[1]);"                    
#[9] "Equal = (G1, 61, Slope[2]);"                     "Equal = (G2, 72, Slope[0]);"                    
#[11] "Equal = (G2, 72, Slope[1]);"                     "Equal = (G2, 72, Slope[2]);"  


更新


使用已更新的数据集

Update

With the updated dataset

out <- map(c('group.1', 'group.2', 'group.3', 'group.4'), 
       ~ item.map %>% 
            select(item.id, .x) %>% 
            rename_at(.x, ~ str_c('G', str_remove(., "\\D+"))) %>% 
            crossing(k = 0:4) %>%
            filter(across(starts_with('G'), as.logical)) %>% 
            glue::glue_data("Equal = ({names(.)[2]}, {item.id}, Slope[{k}]);")%>%
            as.character) %>%
      flatten_chr
 
out[i1 > 1] <- ave(out[i1 > 1], sub("Equal = \\(G\\d+", "", out[i1 > 1]),
     FUN = function(x) {
      x[-length(x)] <- sub(";", "", x[-length(x)])
      paste(x[1], paste(sub("Equal = ", "", x[-1]), collapse = ", "), sep=", ") 
   })
   
unique(out)
 [1] "Equal = (G1, 21, Slope[0]), (G3, 21, Slope[0]);"                    
 [2] "Equal = (G1, 21, Slope[1]), (G3, 21, Slope[1]);"                    
 [3] "Equal = (G1, 21, Slope[2]), (G3, 21, Slope[2]);"                    
 [4] "Equal = (G1, 21, Slope[3]), (G3, 21, Slope[3]);"                    
 [5] "Equal = (G1, 21, Slope[4]), (G3, 21, Slope[4]);"                    
 [6] "Equal = (G1, 41, Slope[0]), (G2, 41, Slope[0]), (G3, 41, Slope[0]);"
 [7] "Equal = (G1, 41, Slope[1]), (G2, 41, Slope[1]), (G3, 41, Slope[1]);"
 [8] "Equal = (G1, 41, Slope[2]), (G2, 41, Slope[2]), (G3, 41, Slope[2]);"
 [9] "Equal = (G1, 41, Slope[3]), (G2, 41, Slope[3]), (G3, 41, Slope[3]);"
[10] "Equal = (G1, 41, Slope[4]), (G2, 41, Slope[4]), (G3, 41, Slope[4]);"
[11] "Equal = (G1, 61, Slope[0]), (G3, 61, Slope[0]);"                    
[12] "Equal = (G1, 61, Slope[1]), (G3, 61, Slope[1]);"                    
[13] "Equal = (G1, 61, Slope[2]), (G3, 61, Slope[2]);"                    
[14] "Equal = (G1, 61, Slope[3]), (G3, 61, Slope[3]);"                    
[15] "Equal = (G1, 61, Slope[4]), (G3, 61, Slope[4]);"                    
[16] "Equal = (G2, 72, Slope[0]), (G4, 72, Slope[0]);"                    
[17] "Equal = (G2, 72, Slope[1]), (G4, 72, Slope[1]);"                    
[18] "Equal = (G2, 72, Slope[2]), (G4, 72, Slope[2]);"                    
[19] "Equal = (G2, 72, Slope[3]), (G4, 72, Slope[3]);"                    
[20] "Equal = (G2, 72, Slope[4]), (G4, 72, Slope[4]);"       




或嵌套循环

OUTPUT <- c()
# // loop over the sequence of rows
for(i in seq_len(nrow(item.map))) {
    # // nested loop to expand on a sequence
    for(k in  0:2) {  
        # // do a second nest based on the 'Group'  
         for(j in seq_along(Group)) {
              # // create a logical expression based on the 'group' column
              i1 <- as.logical(item.map[[paste0("group.", j)]][i])
              # // if it is TRUE, then only do the below
              if(i1) {
                  # // create the expression with paste
                  output <- paste0("Equal = ", paste("(", "G", j, 
                     ", ", item.map$item.id[i], ", Slope[", k, "])", 
                         collapse=", ", sep=""))
                 
              # // concatenate the NULL vector with the temporary output
              OUTPUT <- c(OUTPUT, output)
              }
         
         }
    
    }

}

这篇关于通过考虑r(2)中的分组Q矩阵来操纵字符向量的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

11-02 14:53