问题描述
我有一个具有列名的数据框对象 test
:
I have a data frame object test
that has column names:
> test
a b c d e
1 -0.67 -0.02 -0.10 -0.22 -0.32
2 0.46 -1.51 -0.79 0.26 1.19
3 0.22 -0.18 -1.40 0.41 -0.32
4 -2.21 0.79 0.36 1.00 -0.51
5 -0.69 0.39 -0.76 -0.73 -0.43
在这种格式中,我可以使用 test$b
符号轻松访问列.我可以毫不费力地将其转换为时间序列对象:
In this format, I can easily access the columns using the test$b
notation. I can convert this to a time series object without difficulty:
test.ts <- ts(test, frequency=<value>, start=<value>
但是,一旦它是一个 ts
对象,是否有任何简单的方法可以按名称而不是按列号访问列(或行)?test.ts
对象仍然有列名信息,使用colnames
表示:
However, once it's a ts
object, is there any easy way to access the columns (or rows) by name instead of by column number? The test.ts
object still has the column name information, shown by using colnames
:
> colnames(test.ts)
[1] "a" "b" "c" "d" "e"
然而,test.ts$b
不起作用.请注意,轻松"是指不写像 test.ts[,which(colnames(test.ts)=="b"]
这样难看的东西,因为这并不容易,那很丑陋.是的,我可以编写自己的函数来做到这一点,但我想知道是否有内置的方法来做到这一点.谢谢!
However, test.ts$b
doesn't work. Note that by "easily" I mean without writing something ugly like test.ts[,which(colnames(test.ts)=="b"]
, because that's not easy, that's ugly. Yes, I could write my own function to do that, but I was wondering whether there's a built-in way to do this. Thanks!
根据要求:
> dput(head(a))
structure(list(a = c(-0.67, 0.46, 0.22, -2.21, -0.69, -0.45),
b = c(-0.02, -1.51, -0.18, 0.79, 0.39, -1.33), c = c(-0.1,
-0.79, -1.4, 0.36, -0.76, 0.15), d = c(-0.22, 0.26, 0.41,
1, -0.73, -2.23), e = c(-0.32, 1.19, -0.32, -0.51, -0.43,
-0.58)), .Names = c("a", "b", "c", "d", "e"), row.names = c(NA,
6L), class = "data.frame")
推荐答案
使用其他子集语法:
test.ts[, 'b']
#Time Series:
#Start = 1
#End = 6
#Frequency = 1
#[1] -0.02 -1.51 -0.18 0.79 0.39 -1.33
这篇关于按列名引用时间序列对象的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!