问题描述
pyspark==2.4.0
这是给出异常的代码:
LDA = spark.read.parquet('./LDA.parquet/')
LDA.printSchema()
from pyspark.ml.clustering import KMeans
from pyspark.ml.evaluation import ClusteringEvaluator
kmeans = KMeans(featuresCol='topic_vector_fix_dim').setK(15).setSeed(1)
model = kmeans.fit(LDA)
根
|-- Id: string (nullable = true)
|-- topic_vector_fix_dim: 数组 (nullable = true)
||-- 元素:double (containsNull = true)
root
|-- Id: string (nullable = true)
|-- topic_vector_fix_dim: array (nullable = true)
| |-- element: double (containsNull = true)
IllegalArgumentException:'要求失败:列 topic_vector_fix_dim 的类型必须等于以下类型之一:[struct ,values:array <double > >, array <double >, 数组 ] 但实际上是 array < 类型双 > .'
IllegalArgumentException:'requirement failed: Column topic_vector_fix_dim must be of type equal to one of the following types: [struct < type:tinyint,size:int,indices:array < int >,values:array < double > >, array < double >, array < float > ] but was actually of type array < double > .'
我很困惑 - 它不喜欢我的 array <double>
,但说它可能是输入.
topic_vector_fix_dim 的每个条目都是一个一维浮点数组
I am confused - it does not like my array <double>
, but says that it may be the input.
Each entry of the topic_vector_fix_dim is a 1d array of floats
推荐答案
containsNull
的 features 列应设置为 False
:
containsNull
of the features column should be set to False
:
new_schema = ArrayType(DoubleType(), containsNull=False)
udf_foo = udf(lambda x:x, new_schema)
LDA = LDA.withColumn("topic_vector_fix_dim",udf_foo("topic_vector_fix_dim"))
之后一切正常.
这篇关于Pyspark KMeans 聚类特征列 IllegalArgumentException的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!