本文介绍了使用Tensorflow contrib keras时的导入语句的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一堆使用Keras编写的代码,这些代码是作为单独的pip安装安装的,并且导入语句的编写方式类似于from keras.models import Sequential等.

I have a bunch of code written using Keras that was installed as a separate pip install and the import statements are written like from keras.models import Sequential, etc..

在新机器上,我安装了Tensorflow,现在在 contrib 目录中包括Keras.为了保持版本的一致性,我认为最好使用 contrib 中的功能,而不是单独安装Keras,但这会导致一些导入问题.

On a new machine, I have Tensorflow installed which now includes Keras inside the contrib directory. In order to keep the versions consistent I thought it would be best to use what's in contrib instead of installing Keras separately, however this causes some import issues.

我可以使用import tensorflow.contrib.keras as keras导入Keras,但是做类似from tensorflow.contrib.keras.models import Sequential的操作会给出 ImportError:没有名为模型的模块,而from keras.models import Sequential提供了类似的 ImportError:没有名为keras的模块.型号.

I can import Keras using import tensorflow.contrib.keras as keras but doing something like from tensorflow.contrib.keras.models import Sequential gives ImportError: No module named models, and from keras.models import Sequential gives a similar ImportError: No module named keras.models.

是否有一种简单的方法来使from x.y import z语句起作用?如果不是这样,则意味着更改所有实例以使用冗长的命名(即m1 = keras.models.Sequential()),这不是我的首选语法,但是是可行的.

Is there a simple method to get the from x.y import z statements to work? If not it means changing all the instances to use the verbose naming (ie.. m1 = keras.models.Sequential()) which isn't my preferred syntax but is do-able.

推荐答案

尝试使用最新版本的tensorflow:

Try this with recent versions of tensorflow:

from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import LSTM, TimeDistributed, Dense, ...

这篇关于使用Tensorflow contrib keras时的导入语句的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-05 10:11
查看更多