问题描述
如何在 train(...)
完成后从 tf.estimator.Estimator
获取最后一个 global_step
?例如,一个典型的基于 Estimator 的训练程序可能是这样设置的:n_epochs = 10model_dir = '/path/to/model_dir'
How can I obtain the last global_step
from a tf.estimator.Estimator
after train(...)
finishes? For instance, a typical Estimator-based training routine might be set up like this: n_epochs = 10 model_dir = '/path/to/model_dir'
def model_fn(features, labels, mode, params):
# some code to build the model
pass
def input_fn():
ds = tf.data.Dataset() # obviously with specifying a data source
# manipulate the dataset
return ds
run_config = tf.estimator.RunConfig(model_dir=model_dir)
estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config)
for epoch in range(n_epochs):
estimator.train(input_fn=input_fn)
# Now I want to do something which requires to know the last global step, how to get it?
my_custom_eval_method(global_step)
只有 evaluate()
方法返回一个包含 global_step
作为字段的字典.如何获得global_step
,如果由于某种原因,我不能或不想使用这种方法?
Only the evaluate()
method returns a dictionary containing the global_step
as a field. How can I get the global_step
, if for some reason, I can't have or don't want to use this method?
推荐答案
最近,我发现 estimator 有 api get_variable_value
recently, I found estimator has the api get_variable_value
global_step = estimator.get_variable_value("global_step")
这篇关于如何从 tf.estimator.Estimator 获取最后一个 global_step的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!