问题描述
我是Weka的新手。我想在WEKA中使用顺序最小优化。
有人能告诉我怎么办吗?
这里是我的Java代码,但它不起作用:
I'm new with Weka. I want to use Sequential Minimal Optimization in WEKA.Could anyone tell me how to proceed?here is my Java code but it doesn't work:
public class SVMTest {
public void test(File input) throws Exception{
File tmp = new File("tmp-file-duplicate-pairs.arff");
String path = input.getParent();
//tmp.deleteOnExit();
////removeFeatures(input,tmp,useType,useNames, useActivities, useOccupation,useFriends,useMailAndSite,useLocations);
Instances data = new weka.core.converters.ConverterUtils.DataSource(tmp.getAbsolutePath()).getDataSet();
data.setClassIndex(data.numAttributes() - 1);
Classifier c = null;
String ctype = null;
boolean newmodel = false;
ctype ="SMO";
c = new SMO();
String[] options = {"-M"};
c.setOptions(options);
c.buildClassifier(data);
newmodel = true;
//c = loadClassifier(input.getParentFile().getParentFile(),ctype);
if(newmodel)
saveModel(c,ctype, input.getParentFile().getParentFile());
Evaluation eval = new Evaluation(data);
eval.crossValidateModel(c, data, 10, new Random(1));
System.out.println(c);
System.out.println(eval.toSummaryString());
System.out.println(eval.toClassDetailsString());
System.out.println(eval.toMatrixString());
tmp.delete();
}
private static void saveModel(Classifier c, String name, File path) throws Exception {
ObjectOutputStream oos = null;
try {
oos = new ObjectOutputStream(
new FileOutputStream(path.getAbsolutePath()+"/"+name+".model"));
} catch (FileNotFoundException e1) {
e1.printStackTrace();
} catch (IOException e1) {
e1.printStackTrace();
}
oos.writeObject(c);
oos.flush();
oos.close();
}
}
我想知道如何提供.arff文件?
我的数据集采用XML文件的形式。
I want to know how to provide .arff file?my Dataset is in the form of XML files.
推荐答案
我想你现在已经弄明白了,但是万一它有助于其他人,有一个关于它的维基页面:
I guess you have figured it out by now, but in case it helps others, there is a wiki page about it:
使用SMO,让我们说你有一些火车实例trainset,以及一个测试集testset
来构建分类器:
to use SMO, let's say you have some train instances "trainset", and a test set "testset"to build the classifier:
// train SMO and output model
SMO classifier = new SMO();
classifier.buildClassifier(trainset);
使用交叉验证对其进行评估,例如:
to evaluate it using cross validation for example:
Evaluation eval = new Evaluation(testset);
Random rand = new Random(1); // using seed = 1
int folds = 10;
eval.crossValidateModel(classifier, testset, folds, rand);
然后eval保存所有统计数据等。
then eval holds all the stats, etc.
这篇关于SMO,WEKA中的顺序最小优化的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!