问题描述
使用标准的Python数组,我可以执行以下操作:
Using standard Python arrays, I can do the following:
arr = []
arr.append([1,2,3])
arr.append([4,5,6])
# arr is now [[1,2,3],[4,5,6]]
但是,我不能在numpy中做同样的事情.例如:
However, I cannot do the same thing in numpy. For example:
arr = np.array([])
arr = np.append(arr, np.array([1,2,3]))
arr = np.append(arr, np.array([4,5,6]))
# arr is now [1,2,3,4,5,6]
我也查看了vstack
,但是当我在空数组上使用vstack
时,我得到了:
I also looked into vstack
, but when I use vstack
on an empty array, I get:
ValueError: all the input array dimensions except for the concatenation axis must match exactly
那我该如何将新行追加到numpy中的空数组?
So how do I do append a new row to an empty array in numpy?
推荐答案
启动"所需数组的方法是:
The way to "start" the array that you want is:
arr = np.empty((0,3), int)
这是一个空数组,但具有适当的维数.
Which is an empty array but it has the proper dimensionality.
>>> arr
array([], shape=(0, 3), dtype=int64)
然后确保沿轴0附加:
arr = np.append(arr, np.array([[1,2,3]]), axis=0)
arr = np.append(arr, np.array([[4,5,6]]), axis=0)
但是,@ jonrsharpe是正确的.实际上,如果要循环添加,则像第一个示例中那样将其添加到列表中会更快得多,然后最后转换为numpy数组,因为您实际上并没有将numpy用作打算在循环中使用:
But, @jonrsharpe is right. In fact, if you're going to be appending in a loop, it would be much faster to append to a list as in your first example, then convert to a numpy array at the end, since you're really not using numpy as intended during the loop:
In [210]: %%timeit
.....: l = []
.....: for i in xrange(1000):
.....: l.append([3*i+1,3*i+2,3*i+3])
.....: l = np.asarray(l)
.....:
1000 loops, best of 3: 1.18 ms per loop
In [211]: %%timeit
.....: a = np.empty((0,3), int)
.....: for i in xrange(1000):
.....: a = np.append(a, 3*i+np.array([[1,2,3]]), 0)
.....:
100 loops, best of 3: 18.5 ms per loop
In [214]: np.allclose(a, l)
Out[214]: True
执行numpythonic的方式取决于您的应用程序,但更像是:
The numpythonic way to do it depends on your application, but it would be more like:
In [220]: timeit n = np.arange(1,3001).reshape(1000,3)
100000 loops, best of 3: 5.93 µs per loop
In [221]: np.allclose(a, n)
Out[221]: True
这篇关于如何将新行添加到空的numpy数组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!