本文介绍了使用ggplot绘制'时间序列'的深度范围的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个数据集,包含53个单鱼的深度位置平均值和最小值,跨越3个月。
我想做一个 ggplot ,包括所有的鱼(可能会有点混乱),显示均值和最小值作为阴影均值附近的变化 - 这些值是而不是标准差值。



这就是我希望它看起来像的样子





(发现在这篇文章中; )



我试过了替换和摆弄这个例子中使用的代码(当然还有其他代码),并且我创建了一个好的情节(不是我在RIGHT NOW之后的东西) - 但是不能发布图像,但是我使用的代码是如下:

  ggplot(data = Dybde_mnd_gjsn,aes(x = MONTH,y = MEAN,color = factor(ID)) )+ 
geom_line()

只有几个变量:

 名称(Dybde_mnd_gjsn)
[ 1]MONTHMEANID

我将使用NOW来绘制幅度有几个变量:

  names(Dybde_amplitude)
[1]MONTHDAYMEAN MINMAXID

继承人是我想要使用的数据片段

 >输入(Dybde_amplitude)
结构(列表(MONTH = c(5L,5L,5L,5L,5L,5L,5L,5L,5L,
5L,5L,5L,5L,5L,5L, 5L,5L,5L,5L,5L,5L,5L,5L,5L,6L,
6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L, 6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,7L,7L,7L,7B,6L,6L,6L,6L,6L,6L,6L,6L, 7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L, 8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,
9L,9L,9L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L, 5L,5L,5L,5L,5L,5L,5L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L, 6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,6L,7L,7L,7L,7L,7L,7L, 7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L,7L, 8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L,8L, 8L,
8L,8L,8L,8L,8L,8L,8L,8L,9L,9L,9L,9L,9L,9L,9L,9L,9L,
9L,9L,9L,9L,9L,9L ,9L,9L,9L,9L,9L,9L,9L,9L,9L,9L,9L,9L,9L,9L,10L,10L,10L,10L,10L, ,10L,10L,10L,10L,10L,10L,10L,10L,10L,10L,10L,10L,10L,10L,10L,10L,10L,10L,10L, ,10L,10L,10L,11L,11L,11L,
11L,11L,11L,11L,11L,11L,11L,11L,11L,11L),DAY = c(7L,
8L, 9L,11L,12L,13L,14L,15L,16L,17L,18L,19L,20L,21L,
22L,23L,24L,25L,26L,27L,28L,29L,30L,31L, 2L,3L,
4L,5L,6L,7L,8L,9L,10L,11L,12L,13L,14L,15L,16L,17L,
18L,19L,20L,21L,22L, 23L,24L,25L,26L,27L,28L,29L,30L,
1L,2L,3L,4L,5L,6L,7L,8L,9L,10L,11L,12L,13L,14L, $ b 15L,16L,17L,18L,19L,20L,21L,22L,23L,24L,25L,26L,27L,
28L,29L,30L,31L,1L,2L,3L,4L,5L, 6L,7L,8L,9L,10L,
11L,12L,13L,14L,26L,27L,28L,29L,30L,31L,1L,2L,3L,
7L,8L,9L, 10L,11L,12 L,13L,14L,15L,16L,17L,18L,19L,
20L,21L,22L,23L,24L,25L,26L,27L,28L,29L,30L,31L,1L, 2L,3L,4L,5L,6L,7L,8L,9L,10L,11L,12L,13L,14L,15L,
16L,17L,18L,19L,20L,21L,22L,23L,24L, 25L,26L,27L,28L,
29L,30L,1L,2L,3L,4L,5L,6L,7L,8L,9L,10L,11L,12L,
13L,14L, 16L,17L,18L,19L,20L,21L,22L,23L,24L,25L,
26L,27L,28L,29L,30L,31L,1L,2L,3L,4L,5L,6L,7L, 8L,
9L,10L,11L,12L,13L,14L,15L,16L,17L,18L,19L,20L,21L,
22L,23L,24L,25L,26L,27L,28L, 29L,30L,31L,1L,2L,3L,
4L,5L,6L,7L,8L,9L,10L,11L,12L,13L,14L,15L,16L,17L, 19L,20L,21L,22L,23L,24L,25L,26L,27L,28L,29L,30L,
1L,2L,3L,4L,5L,6L,7L,8L,9L,10L,11L, 12L,13L,14L,
15L,16L,17L,18L,19L,20L,21L,22L,23L,24L,25L,26L,27L,
28L,29L,30L,31L, 2L,3L,4L,5L,6L,7L,8L,9L,10L,
11L,12L,13L),MEAN = c(9.540647,9.288714,8.432471, 377365,
6.76296,6.276494,12.972529,18.019079,6.788923,6.215657,
8.04514,5.633161,8.073261,6.390555,7.356341,6.908082,7.733372,
7.702988,8.027043,7.180671,8.35001,8.806448, 9.189368,11.639917,
11.278741,8.360776,10.257245,10.149662,12.750096,8.278289,
5.989309,12.213945,8.508868,12.648187,12.878193,14.39192,
7.623049,11.484679,10.60802,8.295495,8.845541, 8.139116,
9.62127,10.122368,9.006005,10.353516,12.176356,8.705348,
8.43072,13.068286,15.310207,15.686594,14.840801,11.393752,
12.468137,17.784591,8.108516,14.655444,10.515425,12.431097,
9.919435,10.394816,11.558687,15.752784,15.442462,12.866537,
13.900521,11.482066,6.671224,8.342884,16.114621,16.629631,
8.660017,14.224467,15.533569,12.41233,5.960347,9.871627,
7.989248,8.348769,10.795695,18.17083,15.11693,14.552147
11.116431,13.92426,15.067066,16.546982,12.09092,15.489066
16.386美国国家科学院院报997,16.369983,16.666472,16.439537,14.961976,8.400368,
9.243826,8.860606,15.482827,5.891674,12.889285,8.104939,
17.531697,10.702164,13.657768,14.816514,10.093246,9.122293,
4.729045, 5.458503,5.705868,12.748805,14.904001,17.692,6.036507,
6.629023,6.006198,6.620014,6.388301,4.964946,5.70888,6.731503,
4.177703,5.707092,5.419896,5.743811,6.914309,8.771285,10.280664,
8.882466,10.232784,10.717011,10.578657,11.56234,12.180956,
11.682375,10.127121,11.493758,10.475167,9.530382,7.278434,
11.031396,7.510209,11.197544,11.953527,11.764005,10.732215,
6.84638,11.731543,11.593536,7.999654,9.747014,8.357976,
7.9729,14.120155,11.902921,10.197552,8.073362,10.317106,
13.507428,14.653348,10.425436,13.372142,14.139852,8.292127,
13.026231, 10.412969,15.822424,16.974569,18.421219,14.874954,
15.19774,16.192414,13.456357,18.018939,13.06192,8.639087,
12.765785, 11.764159,8.551737,14.76467,10.406063,11.606126,
14.361956,12.14953,11.489708,15.935027,17.127559,16.522154,
10.894316,13.134836,13.114416,13.727499,15.169832,15.189013,
16.968254,15.396868, 14.64583,14.812744,15.053284,15.157046,
16.467487,16.665042,15.150461,14.635215,14.721557,15.840516,
17.882953,15.356118,16.391199,15.900671,15.42199,10.389486,
7.947174,12.650666,14.631651, 12.691862,11.540124,11.898669,
11.366367,12.491286,12.607952,12.714351,14.942454,12.351443,
13.195234,12.010512,12.305635,12.216722,12.777485,9.775835,
11.955268,11.368552,11.016467,9.721845, 10.806302,10.9171,
10.453463,12.844585,11.418213,10.494833,11.628353,11.089386,
10.114644,11.518541,10.556667,9.999429,6.240064,7.614508,
2.759079,8.675967,7.665187,9.996974,9.409778, 11.284177,
9.915669,10.073183,12.478693,9.344805,9.985623,10.137344,
10.899548,10.987574,9 0.602739,9.522853,6.755497,5.770355,
5.752236,7.560061,8.650949,9.461071,10.349785,9.341064,
9.639314,8.979398,9.63129,10.736764,9.131154,8.569252,9.456744,
8.771311,10.607428 ,8.951906,8.621349,7.685053,8.024678,
5.514734,7.39701,4.573696,4.639201,4.925964,11.295734,4.381326,
4.320309,5.210907,5.367718,4.563952,4.744356,2.950165),
MIN = C(8.797308,8.678333,7.766875,6.853333,5.61875,
5.353125,11.882128,17.313191,5.425833,5.225,6.31375,
4.785,6.648333,5.077917,5.8925,5.627083,6.487917,6.67875,

10.328667,6.31617,8.871875,8.767872,11.512979,6.486809,
4.961702,10.671042,7.100851,11.570208,11.542766,12.385238,
6.311087, 10.100208,9.577805,7.345227,7.866042,7.204,
8.253023,8.769375,7.894167,9.400851,11.269744,7.655417,
6.812979,11.394375,13.8175,14.2 94375,13.165208,9.943191,
11.276444,16.884167,7.246889,12.704375,8.956889,11.251277,
8.311458,8.62383,10.030833,14.564375,14.605417,11.158542,
12.42125,10.294,5.315208,7.044792, 14.696458,15.389167,
7.3975,13.421489,14.955319,11.108478,4.849167,8.50125,
6.776957,7.408723,9.500625,17.558511,14.387708,13.864167,
9.728542,13.374,14.14.5833,15.628542,10.460213, 14.234565,
16.26875,16.195833,16.179167,16.118182,14.107083,7.67125,
9.060638,7.975833,13.734687,4.4,11.070444,6.305641,
16.709574,9.93,12.559792,14.010417,9.10587,7.900345,
4.048,4.371304,5.315833,11.510833,13.698125,16.65375,
5.158542,5.748667,4.957083,5.524583,5.204375,4.235,
4.8025,5.868913,3.491915,5.030435,4.711458,4.958958,
5.879348,7.601087,8.915,7.87275,9.358261,9.74625,9.087708,
10.858723,11.538333,10.801489,9.237333, 10.321042,9.425217,
8.394444,6.378182,9.80766,6.812667,10.236667,10.202917,
10.403333,9.350238,6.253902,10.940233,10.502766,7.186667,
8.949773,7.541395,7.541395,13.215435,11.171064, 9.319302,
7.197021,9.524043,12.797292,13.830208,9.306809,12.304043,
12.910976,7.762778,12.136429,9.322826,15.460625,16.665333,
18.2125,13.856087,13.862979,15.556136,12.174118,16.92,
11.778857,7.635263,11.865909,10.958444,7.853404,14.153095,
9.717955,10.932955,13.724667,10.874146,10.57119,15.215714,
16.384186,15.662791,9.91617,12.607442,12.325217,12.901163,
14.532326,14.454091,16.248222,14.838511,14.012708,14.251489
14.418125,14.396522,16.020625,15.897447,14.54413,13.964375
14.271064,15.27625,17.429787,14.618444,15.641489,15.257174
14.84186,9.652708,7.102667,12.118261,14.130513,12.154,
10.940698,11.4189 13,10.768043,11.788085,12.017556,12.192326,
14.272895,11.660417,12.43619,11.482766,11.761304,11.775,
12.280435,9.125217,11.464348,10.741522,10.584783,9.086957,
10.062667,10.385652, 9.785,12.26,10.839268,9.808864,
10.80025,10.574419,9.469583,10.794634,9.949149,9.406458,
4.863617,6.528125,2.577143,7.9805,7.077083,9.406585,
8.903556,10.933,9.384146, 9.681778,11.786,8.873478,9.341333,
9.362,10.171282,10.353,9.095435,8.736087,5.785208,4.785152,
5.163871,6.848333,7.645862,9.119714,9.895143,8.720227,
9.019048,8.169231, 8.652553,9.837872,8.077708,7.354043,
8.591556,8.024894,9.41766,7.989535,7.86973,6.921111,
6.793939,5.034815,6.788718,4.00119,3.939778,4.195545,
10.178667,3.931915,3.6912174, 4.627273,4.967568,4.021395,
4.380652,2.825263),MAX = c(10.215385,9.747708,8.920625,
8.013958,8.067917, 7.41,14.122128,18.531277,8.23375,
7.503125,9.537083,6.659375,9.591458,7.88625,8.799167,
8.335417,8.806875,8.7025,8.793125,8.531702,8.967209,
10.017556,10.391042,12.829574, 12.124667,10.097447,11.530625,
11.344043,14.207872,9.877021,7.166809,14.081875,10.238723,
13.89375,14.41383,16.892143,8.935217,12.958542,11.717805,
9.260455,9.698958,9.1995,10.746744, 11.263542,10.07375,
11.502553,13.095641,9.9025,10.048511,14.837708,16.728125,
17.283333,16.538333,12.96383,13.912889,18.56875,8.991333,
16.5925,11.898222,13.544681,11.173958,12.095106, 12.826667,
16.841667,16.102083,14.120833,15.475,12.647111,8.1475,
10.014792,17.6,17.7,10.006875,14.974468,16.187234,13.607174,
7.147083,11.132917,9.376739,9.333404,11.991875, 18.652979,
15.874375,15.365417,12.478958,14.561333,15.710417,17.25625,
13.6521 28,16.800435,16.4375,16.50625,17.383333,16.870455,
15.819167,8.9865,9.429149,9.826667,17.449375,7.644615,
14.726,10.080769,18.468511,11.542292,14.902708,15.435,
10.948261, 10.493103,5.1848,6.656957,6.126458,14.110417,
16.245833,18.708542,6.928542,7.402889,7.362292,7.847917,
7.513542,5.682292,7.056667,7.581087,4.830213,6.350435,
6.203125,6.69625, 7.854565,9.83,12.218043,9.91375,11.210217,
11.911667,11.977917,12.235319,12.869792,12.59,10.904,
12.784583,11.599565,10.868889,8.172955,12.354894,8.29,
12.584792,13.69875, 13.4375,12.084762,7.459268,12.525814,
12.690638,8.770889,10.471364,9.085349,8.343256,14.877391,
12.579574,10.923953,9.053191,11.291277,14.24,15.647083,
11.66,14.248723,15.392927, 8.849722,13.746905,11.335,
16.13875,17.231333,18.5625,16.004348,16.694894,16.927727,
14.602941, 19.270526,14.102857,9.673158,13.643409,12.648222,
9.327447,15.280238,11.120227,12.355682,14.967556,13.422927,
12.263095,16.472381,17.768372,17.498605,11.689787,13.640233,
13.728696,14.696744, 15.730698,15.930455,17.747111,15.903404,
15.326667,15.362979,15.710417,15.831957,17.023333,17.588085,
15.782609,15.255833,15.112766,16.508958,18.248936,16.036222,
17.105532,16.641739,15.978372, 11.263333,8.832889,13.246957,
15.210769,13.252444,12.264651,12.448696,11.922174,13.205106,
13.237333,13.215349,15.572368,12.949792,13.973571,12.448936,
12.824348,12.726304,13.20587,10.500435, 12.617826,12.051087,
11.623043,10.586739,11.522,11.592826,11.18,13.480811,
12.013171,11.237727,12.2745,11.579767,10.610417,12.045854,
11.186596,10.53375,7.959787,8.633437,2.954286, 9.378,
8.316875,10.447073,9.791556,11.7455,10。 434878,10.571111,
13.021429,9.997391,10.452,10.915111,11.569231,11.545,
10.148478,10.29087,8.039375,6.98697,6.281935,8.181429,
9.577241,9.891429,11.002857,9.821136,10.195714, 9.894359,
10.444681,11.646596,10.203125,9.886383,10.184444,9.619149,
11.618511,10.00093,9.375405,8.419333,9.280606,6.762222,
7.907179,5.254048,5.393556,5.644773,12.823778,5.107447,
5.060652,5.784318,5.773514,5.135814,5.240652,3.08),
ID = c(7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L,
7288L,7288L,7288L ,7288L,7288L,7288L,7288L,7288L,7288L,
7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L,
7288L,7288L,7288L,7288L,7288L,7288L ,7288L,7288L,7288L,
7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L,
7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L ,
7288L,7288L,7288L,7288L,7288L,7288 L,7288L,7288L,7288L,
7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L,
7288L,7288L,7288L,7288L,7288L, 7288L,
7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L,
7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L,
7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L,7288L,
7288L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L, 7293L,7293L,7293L,7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L, 7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,
7293L, 7293L,729 3L,7293L,7293L,7293L,7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L, 7293L,7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L, 7293L,
7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,$ 7289L,7293L,7293L, 7293L,7293L,7293L,7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L, 7293L,7293L,7293L,
7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,7293L,
7293L,7293L,7293L)),.Names = c(MONTH,日,平均,
最小值,MAX,ID),class =data.frame,row.names = c(NA,
-299L))

这可以理解吗?!
我是R和ggplot的新手,所以这篇文章可能看起来有点傻。



真的很感谢任何帮助!
另外,这个 merge 与数据集有什么关系?它是至关重要的吗?

解决方案

解决方案之一是使用 geom_ribbon() geom_line()一起绘制这些数据。 geom_ribbon()会产生灰色区域,取决于 MIN MAX 值。

正如您的示例数据中那样,对于 DAY MONTH 创建了包含这两列以及2012年新增列的新列(可以用实际年份替换)。然后将这些列用作x值。

  df $ date< -as.Date(paste(2012,df $ MONTH ,df $ DAY,sep =/))

ggplot(data = df)+
geom_ribbon(aes(x = date,ymin = MIN,ymax = MAX,group = ID ),fill =gray)+
geom_line(aes(x = date,y = MEAN,group = ID,color = as.factor(ID)))


I have a dataset with means and min max values of depth positions for 53 individual fish, spanning over 3 months.I want to make a ggplot including all fish (might get a bit chaotic) showing means and min max values as shaded "variations around mean" - these values are not SD values.

THIS is what I wish for it to look like

(Found in this post; Plotting average of multiple variables in time-series using ggplot)

I've tried replacing and fiddling around with the code used in that example (and others of course), and I created a "nice" plot (not what I'm after RIGHT NOW tho) - but can't post images but the code I used is as following;

ggplot(data=Dybde_mnd_gjsn, aes(x=MONTH, y=MEAN, colour=factor(ID))) +
geom_line()

Having only a couple variables:

names(Dybde_mnd_gjsn)
[1] "MONTH" "MEAN"  "ID"

The dataset I'll use NOW for plotting amplitude has a couple more variables:

names(Dybde_amplitude)
[1] "MONTH" "DAY"   "MEAN"  "MIN"   "MAX"   "ID" 

And heres a snippet of the data I want to use

> dput(Dybde_amplitude)
structure(list(MONTH = c(5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
9L, 9L, 9L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L), DAY = c(7L, 
8L, 9L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 
22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 1L, 2L, 3L, 
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 
18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 
28L, 29L, 30L, 31L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
11L, 12L, 13L, 14L, 26L, 27L, 28L, 29L, 30L, 31L, 1L, 2L, 3L, 
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 
20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 1L, 
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 
29L, 30L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 
26L, 27L, 28L, 29L, 30L, 31L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 
22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 1L, 2L, 3L, 
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 
18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 
28L, 29L, 30L, 31L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
11L, 12L, 13L), MEAN = c(9.540647, 9.288714, 8.432471, 7.377365, 
6.76296, 6.276494, 12.972529, 18.019079, 6.788923, 6.215657, 
8.04514, 5.633161, 8.073261, 6.390555, 7.356341, 6.908082, 7.733372, 
7.702988, 8.027043, 7.180671, 8.35001, 8.806448, 9.189368, 11.639917, 
11.278741, 8.360776, 10.257245, 10.149662, 12.750096, 8.278289, 
5.989309, 12.213945, 8.508868, 12.648187, 12.878193, 14.39192, 
7.623049, 11.484679, 10.60802, 8.295495, 8.845541, 8.139116, 
9.62127, 10.122368, 9.006005, 10.353516, 12.176356, 8.705348, 
8.43072, 13.068286, 15.310207, 15.686594, 14.840801, 11.393752, 
12.468137, 17.784591, 8.108516, 14.655444, 10.515425, 12.431097, 
9.919435, 10.394816, 11.558687, 15.752784, 15.442462, 12.866537, 
13.900521, 11.482066, 6.671224, 8.342884, 16.114621, 16.629631, 
8.660017, 14.224467, 15.533569, 12.41233, 5.960347, 9.871627, 
7.989248, 8.348769, 10.795695, 18.17083, 15.11693, 14.552147, 
11.116431, 13.92426, 15.067066, 16.546982, 12.09092, 15.489066, 
16.386997, 16.369983, 16.666472, 16.439537, 14.961976, 8.400368, 
9.243826, 8.860606, 15.482827, 5.891674, 12.889285, 8.104939, 
17.531697, 10.702164, 13.657768, 14.816514, 10.093246, 9.122293, 
4.729045, 5.458503, 5.705868, 12.748805, 14.904001, 17.692, 6.036507, 
6.629023, 6.006198, 6.620014, 6.388301, 4.964946, 5.70888, 6.731503, 
4.177703, 5.707092, 5.419896, 5.743811, 6.914309, 8.771285, 10.280664, 
8.882466, 10.232784, 10.717011, 10.578657, 11.56234, 12.180956, 
11.682375, 10.127121, 11.493758, 10.475167, 9.530382, 7.278434, 
11.031396, 7.510209, 11.197544, 11.953527, 11.764005, 10.732215, 
6.84638, 11.731543, 11.593536, 7.999654, 9.747014, 8.357976, 
7.9729, 14.120155, 11.902921, 10.197552, 8.073362, 10.317106, 
13.507428, 14.653348, 10.425436, 13.372142, 14.139852, 8.292127, 
13.026231, 10.412969, 15.822424, 16.974569, 18.421219, 14.874954, 
15.19774, 16.192414, 13.456357, 18.018939, 13.06192, 8.639087, 
12.765785, 11.764159, 8.551737, 14.76467, 10.406063, 11.606126, 
14.361956, 12.14953, 11.489708, 15.935027, 17.127559, 16.522154, 
10.894316, 13.134836, 13.114416, 13.727499, 15.169832, 15.189013, 
16.968254, 15.396868, 14.64583, 14.812744, 15.053284, 15.157046, 
16.467487, 16.665042, 15.150461, 14.635215, 14.721557, 15.840516, 
17.882953, 15.356118, 16.391199, 15.900671, 15.42199, 10.389486, 
7.947174, 12.650666, 14.631651, 12.691862, 11.540124, 11.898669, 
11.366367, 12.491286, 12.607952, 12.714351, 14.942454, 12.351443, 
13.195234, 12.010512, 12.305635, 12.216722, 12.777485, 9.775835, 
11.955268, 11.368552, 11.016467, 9.721845, 10.806302, 10.9171, 
10.453463, 12.844585, 11.418213, 10.494833, 11.628353, 11.089386, 
10.114644, 11.518541, 10.556667, 9.999429, 6.240064, 7.614508, 
2.759079, 8.675967, 7.665187, 9.996974, 9.409778, 11.284177, 
9.915669, 10.073183, 12.478693, 9.344805, 9.985623, 10.137344, 
10.899548, 10.987574, 9.602739, 9.522853, 6.755497, 5.770355, 
5.752236, 7.560061, 8.650949, 9.461071, 10.349785, 9.341064, 
9.639314, 8.979398, 9.63129, 10.736764, 9.131154, 8.569252, 9.456744, 
8.771311, 10.607428, 8.951906, 8.621349, 7.685053, 8.024678, 
5.514734, 7.39701, 4.573696, 4.639201, 4.925964, 11.295734, 4.381326, 
4.320309, 5.210907, 5.367718, 4.563952, 4.744356, 2.950165), 
    MIN = c(8.797308, 8.678333, 7.766875, 6.853333, 5.61875, 
    5.353125, 11.882128, 17.313191, 5.425833, 5.225, 6.31375, 
    4.785, 6.648333, 5.077917, 5.8925, 5.627083, 6.487917, 6.67875, 
    7.119792, 5.867872, 7.636512, 7.513556, 7.923125, 10.500426, 
    10.328667, 6.31617, 8.871875, 8.767872, 11.512979, 6.486809, 
    4.961702, 10.671042, 7.100851, 11.570208, 11.542766, 12.385238, 
    6.311087, 10.100208, 9.577805, 7.345227, 7.866042, 7.204, 
    8.253023, 8.769375, 7.894167, 9.400851, 11.269744, 7.655417, 
    6.812979, 11.394375, 13.8175, 14.294375, 13.165208, 9.943191, 
    11.276444, 16.884167, 7.246889, 12.704375, 8.956889, 11.251277, 
    8.311458, 8.62383, 10.030833, 14.564375, 14.605417, 11.158542, 
    12.42125, 10.294, 5.315208, 7.044792, 14.696458, 15.389167, 
    7.3975, 13.421489, 14.955319, 11.108478, 4.849167, 8.50125, 
    6.776957, 7.408723, 9.500625, 17.558511, 14.387708, 13.864167, 
    9.728542, 13.374, 14.145833, 15.628542, 10.460213, 14.234565, 
    16.26875, 16.195833, 16.179167, 16.118182, 14.107083, 7.67125, 
    9.060638, 7.975833, 13.734687, 4.4, 11.070444, 6.305641, 
    16.709574, 9.93, 12.559792, 14.010417, 9.10587, 7.900345, 
    4.048, 4.371304, 5.315833, 11.510833, 13.698125, 16.65375, 
    5.158542, 5.748667, 4.957083, 5.524583, 5.204375, 4.235, 
    4.8025, 5.868913, 3.491915, 5.030435, 4.711458, 4.958958, 
    5.879348, 7.601087, 8.915, 7.87275, 9.358261, 9.74625, 9.087708, 
    10.858723, 11.538333, 10.801489, 9.237333, 10.321042, 9.425217, 
    8.394444, 6.378182, 9.80766, 6.812667, 10.236667, 10.202917, 
    10.403333, 9.350238, 6.253902, 10.940233, 10.502766, 7.186667, 
    8.949773, 7.541395, 7.541395, 13.215435, 11.171064, 9.319302, 
    7.197021, 9.524043, 12.797292, 13.830208, 9.306809, 12.304043, 
    12.910976, 7.762778, 12.136429, 9.322826, 15.460625, 16.665333, 
    18.2125, 13.856087, 13.862979, 15.556136, 12.174118, 16.92, 
    11.778857, 7.635263, 11.865909, 10.958444, 7.853404, 14.153095, 
    9.717955, 10.932955, 13.724667, 10.874146, 10.57119, 15.215714, 
    16.384186, 15.662791, 9.91617, 12.607442, 12.325217, 12.901163, 
    14.532326, 14.454091, 16.248222, 14.838511, 14.012708, 14.251489, 
    14.418125, 14.396522, 16.020625, 15.897447, 14.54413, 13.964375, 
    14.271064, 15.27625, 17.429787, 14.618444, 15.641489, 15.257174, 
    14.84186, 9.652708, 7.102667, 12.118261, 14.130513, 12.154, 
    10.940698, 11.418913, 10.768043, 11.788085, 12.017556, 12.192326, 
    14.272895, 11.660417, 12.43619, 11.482766, 11.761304, 11.775, 
    12.280435, 9.125217, 11.464348, 10.741522, 10.584783, 9.086957, 
    10.062667, 10.385652, 9.785, 12.26, 10.839268, 9.808864, 
    10.80025, 10.574419, 9.469583, 10.794634, 9.949149, 9.406458, 
    4.863617, 6.528125, 2.577143, 7.9805, 7.077083, 9.406585, 
    8.903556, 10.933, 9.384146, 9.681778, 11.786, 8.873478, 9.341333, 
    9.362, 10.171282, 10.353, 9.095435, 8.736087, 5.785208, 4.785152, 
    5.163871, 6.848333, 7.645862, 9.119714, 9.895143, 8.720227, 
    9.019048, 8.169231, 8.652553, 9.837872, 8.077708, 7.354043, 
    8.591556, 8.024894, 9.41766, 7.989535, 7.86973, 6.921111, 
    6.793939, 5.034815, 6.788718, 4.00119, 3.939778, 4.139545, 
    10.178667, 3.931915, 3.692174, 4.627273, 4.967568, 4.021395, 
    4.380652, 2.825263), MAX = c(10.215385, 9.747708, 8.920625, 
    8.013958, 8.067917, 7.41, 14.122128, 18.531277, 8.23375, 
    7.503125, 9.537083, 6.659375, 9.591458, 7.88625, 8.799167, 
    8.335417, 8.806875, 8.7025, 8.793125, 8.531702, 8.967209, 
    10.017556, 10.391042, 12.829574, 12.124667, 10.097447, 11.530625, 
    11.344043, 14.207872, 9.877021, 7.166809, 14.081875, 10.238723, 
    13.89375, 14.41383, 16.892143, 8.935217, 12.958542, 11.717805, 
    9.260455, 9.698958, 9.1995, 10.746744, 11.263542, 10.07375, 
    11.502553, 13.095641, 9.9025, 10.048511, 14.837708, 16.728125, 
    17.283333, 16.538333, 12.96383, 13.912889, 18.56875, 8.991333, 
    16.5925, 11.898222, 13.544681, 11.173958, 12.095106, 12.826667, 
    16.841667, 16.102083, 14.120833, 15.475, 12.647111, 8.1475, 
    10.014792, 17.6, 17.7, 10.006875, 14.974468, 16.187234, 13.607174, 
    7.147083, 11.132917, 9.376739, 9.333404, 11.991875, 18.652979, 
    15.874375, 15.365417, 12.478958, 14.561333, 15.710417, 17.25625, 
    13.652128, 16.800435, 16.4375, 16.50625, 17.383333, 16.870455, 
    15.819167, 8.9865, 9.429149, 9.826667, 17.449375, 7.644615, 
    14.726, 10.080769, 18.468511, 11.542292, 14.902708, 15.435, 
    10.948261, 10.493103, 5.148, 6.656957, 6.126458, 14.110417, 
    16.245833, 18.708542, 6.928542, 7.402889, 7.362292, 7.847917, 
    7.513542, 5.682292, 7.056667, 7.581087, 4.830213, 6.350435, 
    6.203125, 6.69625, 7.854565, 9.83, 12.218043, 9.91375, 11.210217, 
    11.911667, 11.977917, 12.235319, 12.869792, 12.59, 10.904, 
    12.784583, 11.599565, 10.868889, 8.172955, 12.354894, 8.29, 
    12.584792, 13.69875, 13.4375, 12.084762, 7.459268, 12.525814, 
    12.690638, 8.770889, 10.471364, 9.085349, 8.343256, 14.877391, 
    12.579574, 10.923953, 9.053191, 11.291277, 14.24, 15.647083, 
    11.66, 14.248723, 15.392927, 8.849722, 13.746905, 11.335, 
    16.13875, 17.231333, 18.5625, 16.004348, 16.694894, 16.927727, 
    14.602941, 19.270526, 14.102857, 9.673158, 13.643409, 12.648222, 
    9.327447, 15.280238, 11.120227, 12.355682, 14.967556, 13.422927, 
    12.263095, 16.472381, 17.768372, 17.498605, 11.689787, 13.640233, 
    13.728696, 14.696744, 15.730698, 15.930455, 17.747111, 15.903404, 
    15.326667, 15.362979, 15.710417, 15.831957, 17.023333, 17.588085, 
    15.782609, 15.255833, 15.112766, 16.508958, 18.248936, 16.036222, 
    17.105532, 16.641739, 15.978372, 11.263333, 8.832889, 13.246957, 
    15.210769, 13.252444, 12.264651, 12.448696, 11.922174, 13.205106, 
    13.237333, 13.215349, 15.572368, 12.949792, 13.973571, 12.448936, 
    12.824348, 12.726304, 13.20587, 10.500435, 12.617826, 12.051087, 
    11.623043, 10.586739, 11.522, 11.592826, 11.18, 13.480811, 
    12.013171, 11.237727, 12.2745, 11.579767, 10.610417, 12.045854, 
    11.186596, 10.53375, 7.959787, 8.633437, 2.954286, 9.378, 
    8.316875, 10.447073, 9.791556, 11.7455, 10.434878, 10.571111, 
    13.021429, 9.997391, 10.452, 10.915111, 11.569231, 11.545, 
    10.148478, 10.29087, 8.039375, 6.98697, 6.281935, 8.181429, 
    9.577241, 9.891429, 11.002857, 9.821136, 10.195714, 9.894359, 
    10.444681, 11.646596, 10.203125, 9.886383, 10.184444, 9.619149, 
    11.618511, 10.00093, 9.375405, 8.419333, 9.280606, 6.762222, 
    7.907179, 5.254048, 5.393556, 5.644773, 12.823778, 5.107447, 
    5.060652, 5.784318, 5.773514, 5.135814, 5.240652, 3.08), 
    ID = c(7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 
    7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 
    7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 
    7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 
    7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 
    7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 
    7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 
    7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 
    7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 
    7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 
    7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 
    7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 7288L, 
    7288L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 7293L, 
    7293L, 7293L, 7293L)), .Names = c("MONTH", "DAY", "MEAN", 
"MIN", "MAX", "ID"), class = "data.frame", row.names = c(NA, 
-299L))

Is this understandable?!I'm new to R and ggplot and SO for that matter so this post might look a bit silly.

Would really appreciate any help in the matter!Also, what is this merge one have to do with the dataset? Is it vital??

解决方案

One solution would be to use the geom_ribbon() together with geom_line() to plot those data. geom_ribbon() will produce grey area depending from MIN and MAX values.

As in your sample data there is separate columns for DAY and MONTH made new column that contains combination of both those columns as well as added year 2012 (you can replace with real year). Then used this columns as x values.

df$date<-as.Date(paste("2012",df$MONTH,df$DAY,sep="/"))

ggplot(data=df)+
  geom_ribbon(aes(x=date,ymin=MIN,ymax=MAX,group=ID),fill="grey") + 
  geom_line(aes(x=date,y=MEAN,group=ID,colour=as.factor(ID)))

这篇关于使用ggplot绘制'时间序列'的深度范围的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-15 07:33