问题描述
我们都知道高斯核的可分离性.还有其他常见的可分离模糊内核吗?
We all know the separability property of a Gaussian Kernel.Are there any other Separable Blur Kernel which are common?
我正在寻找一个减少速度几乎与高斯模糊一样快的内核.
I'm looking for a kernel which decreases almost as fast as Gaussian Blur.
出于各种原因,我无法使用高斯模糊.我希望不需要三角函数的东西(否则,我会使用像Hann这样的"Windows").
I can't use Gaussian Blur for various reasons.I would prefer something which doesn't require Trigonometric Functions (Else I would use some kind of "Windows" like Hann).
谢谢.
推荐答案
一个人可以使用一维信号处理中经典的已知窗口:
http://en.wikipedia.org/wiki/Window_function
One could use the known windows which are classic in 1D Signal Processing:
http://en.wikipedia.org/wiki/Window_function
可以使用外部产品创建2d内核.
实现应与任何可分离的过滤器一样.
A 2d Kernel could be created using Outer product.
Implementation should be as in any separable filter.
这篇关于可分离的2D模糊内核的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!