问题描述
我在 Scala 和 Scala 中编写了以下代码Python,但是返回的 DataFrame 似乎没有应用我正在应用的架构中的不可为空的字段.italianVotes.csv
是一个以~"为分隔符和四个字段的 csv 文件.我使用的是 Spark 2.1.0.
I wrote the following code in both Scala & Python, however the DataFrame that is returned doesn't appear to apply the non-nullable fields in my schema that I am applying. italianVotes.csv
is a csv file with '~' as a separator and four fields. I'm using Spark 2.1.0.
2657~135~2~2013-11-22 00:00:00.0
2658~142~2~2013-11-22 00:00:00.0
2659~142~1~2013-11-22 00:00:00.0
2660~140~2~2013-11-22 00:00:00.0
2661~140~1~2013-11-22 00:00:00.0
2662~1354~2~2013-11-22 00:00:00.0
2663~1356~2~2013-11-22 00:00:00.0
2664~1353~2~2013-11-22 00:00:00.0
2665~1351~2~2013-11-22 00:00:00.0
2667~1357~2~2013-11-22 00:00:00.0
斯卡拉
import org.apache.spark.sql.types._
val schema = StructType(
StructField("id", IntegerType, false) ::
StructField("postId", IntegerType, false) ::
StructField("voteType", IntegerType, true) ::
StructField("time", TimestampType, true) :: Nil)
val fileName = "italianVotes.csv"
val italianDF = spark.read.schema(schema).option("sep", "~").csv(fileName)
italianDF.printSchema()
// output
root
|-- id: integer (nullable = true)
|-- postId: integer (nullable = true)
|-- voteType: integer (nullable = true)
|-- time: timestamp (nullable = true)
Python
from pyspark.sql.types import *
schema = StructType([
StructField("id", IntegerType(), False),
StructField("postId", IntegerType(), False),
StructField("voteType", IntegerType(), True),
StructField("time", TimestampType(), True),
])
file_name = "italianVotes.csv"
italian_df = spark.read.csv(file_name, schema = schema, sep = "~")
# print schema
italian_df.printSchema()
root
|-- id: integer (nullable = true)
|-- postId: integer (nullable = true)
|-- voteType: integer (nullable = true)
|-- time: timestamp (nullable = true)
我的主要问题是,当我在架构中将前两个字段设置为不可为空时,为什么前两个字段可以为空?
My main question is why are the first two fields nullable when I have set them to non-nullable in my schema?
推荐答案
一般来说,Spark Datasets
要么从其父项继承 nullable
属性,要么根据外部数据进行推断类型.
In general Spark Datasets
either inherit nullable
property from its parents, or infer based on the external data types.
您可以争论这是否是一种好方法,但最终它是明智的.如果数据源的语义不支持可空性约束,那么架构的应用程序也不能.归根结底,假设事情可以是 null
总是比在运行时失败要好,如果相反的假设被证明是不正确的.
You can argue if it is a good approach or not but ultimately it is sensible. If semantics of a data source doesn't support nullability constraints, then application of a schema cannot either. At the end of the day it is always better to assume that things can be null
, than fail on the runtime if this the opposite assumption turns out to be incorrect.
这篇关于Spark DataFrame Schema 可空字段的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!