问题描述
我在尝试使用 CUDA 在 Python 中运行此代码时遇到此错误.我正在关注本教程,但我正在 Windows 7 x64 机器上尝试.
I'm having this error when trying to run this code in Python using CUDA. I'm following this tutorial but i'm trying it in Windows 7 x64 machine.
https://www.youtube.com/watch?v=jKV1m8APttU
事实上,我运行 check_cuda() 并且所有测试都通过了.任何人都可以帮助我这里的确切问题是什么.
In fact, I run check_cuda() and all tests passed. Can anyone help me what is the exact issue here.
我的代码:
import numpy as np
from timeit import default_timer as timer
from numbapro import vectorize, cuda
@vectorize(['float64(float64, float64)'], target='gpu')
def VectorAdd(a, b):
return a + b
def main():
N = 32000000
A = np.ones(N, dtype=np.float64)
B = np.ones(N, dtype=np.float64)
C = np.zeros(N, dtype=np.float64)
start = timer()
C = VectorAdd(A, B)
vectoradd_time = timer() - start
print("C[:5] = " + str(C[:5]))
print("C[-5:] = " + str(C[-5:]))
print("VectorAdd took %f seconds" % vectoradd_time)
if __name__ == '__main__':
main()
错误信息:
---------------------------------------------------------------------------
CudaAPIError Traceback (most recent call last)
<ipython-input-18-2436fc2ab63a> in <module>()
1 if __name__ == '__main__':
----> 2 main()
<ipython-input-17-64de53fdbe77> in main()
7
8 start = timer()
----> 9 C = VectorAdd(A, B)
10 vectoradd_time = timer() - start
11
C:\Anaconda2\lib\site-packages\numba\cuda\dispatcher.pyc in __call__(self, *args, **kws)
93 the input arguments.
94 """
---> 95 return CUDAUFuncMechanism.call(self.functions, args, kws)
96
97 def reduce(self, arg, stream=0):
C:\Anaconda2\lib\site-packages\numba\npyufunc\deviceufunc.pyc in call(cls, typemap, args, kws)
297
298 devarys.extend([devout])
--> 299 cr.launch(func, shape[0], stream, devarys)
300
301 if any_device:
C:\Anaconda2\lib\site-packages\numba\cuda\dispatcher.pyc in launch(self, func, count, stream, args)
202
203 def launch(self, func, count, stream, args):
--> 204 func.forall(count, stream=stream)(*args)
205
206 def is_device_array(self, obj):
C:\Anaconda2\lib\site-packages\numba\cuda\compiler.pyc in __call__(self, *args)
193
194 return kernel.configure(blkct, tpb, stream=self.stream,
--> 195 sharedmem=self.sharedmem)(*args)
196
197 class CUDAKernelBase(object):
C:\Anaconda2\lib\site-packages\numba\cuda\compiler.pyc in __call__(self, *args, **kwargs)
357 blockdim=self.blockdim,
358 stream=self.stream,
--> 359 sharedmem=self.sharedmem)
360
361 def bind(self):
C:\Anaconda2\lib\site-packages\numba\cuda\compiler.pyc in _kernel_call(self, args, griddim, blockdim, stream, sharedmem)
431 sharedmem=sharedmem)
432 # Invoke kernel
--> 433 cu_func(*kernelargs)
434
435 if self.debug:
C:\Anaconda2\lib\site-packages\numba\cuda\cudadrv\driver.pyc in __call__(self, *args)
1114
1115 launch_kernel(self.handle, self.griddim, self.blockdim,
-> 1116 self.sharedmem, streamhandle, args)
1117
1118 @property
C:\Anaconda2\lib\site-packages\numba\cuda\cudadrv\driver.pyc in launch_kernel(cufunc_handle, griddim, blockdim, sharedmem, hstream, args)
1158 hstream,
1159 params,
-> 1160 None)
1161
1162
C:\Anaconda2\lib\site-packages\numba\cuda\cudadrv\driver.pyc in safe_cuda_api_call(*args)
220 def safe_cuda_api_call(*args):
221 retcode = libfn(*args)
--> 222 self._check_error(fname, retcode)
223
224 setattr(self, fname, safe_cuda_api_call)
C:\Anaconda2\lib\site-packages\numba\cuda\cudadrv\driver.pyc in _check_error(self, fname, retcode)
250 errname = ERROR_MAP.get(retcode, "UNKNOWN_CUDA_ERROR")
251 msg = "Call to %s results in %s" % (fname, errname)
--> 252 raise CudaAPIError(retcode, msg)
253
254 def get_device(self, devnum=0):
CudaAPIError: [1] Call to cuLaunchKernel results in CUDA_ERROR_INVALID_VALUE
推荐答案
我通过 NVIDIA 开发者论坛找到了解决我的问题的方法.如果您想了解有关解决方案的更多信息,请查看此链接.
I found a solution to my problem through NVIDIA Developer Forum. If you wanna know more info regarding the solution check out this link.
简而言之:
- 当我更改 N = 32000 或任何其他较小的值时,它确实工作得很好.
- 事实上,这意味着我没有以正确的 GPU 类型编译它(check_cuda 是验证它的函数调用).
希望我的回答对某人有所帮助.
Hope my answer would help for someone.
这篇关于CudaAPIError: [1] 在 Python 中调用 cuLaunchKernel 导致 CUDA_ERROR_INVALID_VALUE的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!