本文介绍了在Python中使用线性回归输入缺少的值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试使用线性回归计算 pandas 数据帧中的缺失值

`

for index in [missing_data_df.horsepower.index]:
    i = 0
    if pd.isnull(missing_data_df.horsepower[index[i]]):
            #linear regression equation
            a = 0.25743277 * missing_data_df.displacement[index[i]] + 0.00958711 *
            missing_data_df.weight[index[i]] + 25.874947903262651
            # replacing "nan" values in dataframe using .set_value
            missing_data_df.set_value(index[i],"horsepower",a)
    i+=1

`
它正在执行。但是数据帧中的缺失值(NaN)没有被变量‘a’中的线性回归的预测值替换。有什么建议吗?

下面是包含丢失数据的数据帧`

   >>> missing_data_df:
       mpg cylinders  displacement  horsepower  weight  acceleration
10    NaN       4.0         133.0       115.0  3090.0          17.5
11    NaN       8.0         350.0       165.0  4142.0          11.5
12    NaN       8.0         351.0       153.0  4034.0          11.0
13    NaN       8.0         383.0       175.0  4166.0          10.5
14    NaN       8.0         360.0       175.0  3850.0          11.0
17    NaN       8.0         302.0       140.0  3353.0           8.0
38   25.0       4.0          98.0         NaN  2046.0          19.0
39    NaN       4.0          97.0        48.0  1978.0          20.0
133  21.0       6.0         200.0         NaN  2875.0          17.0
337  40.9       4.0          85.0         NaN  1835.0          17.3
343  23.6       4.0         140.0         NaN  2905.0          14.3
361  34.5       4.0         100.0         NaN  2320.0          15.8
367   NaN       4.0         121.0       110.0  2800.0          15.4
382  23.0       4.0         151.0         NaN  3035.0          20.5

       model_year origin                          car_name
10        70.0    2.0              citroen ds-21 pallas
11        70.0    1.0  chevrolet chevelle concours (sw)
12        70.0    1.0                  ford torino (sw)
13        70.0    1.0           plymouth satellite (sw)
14        70.0    1.0                amc rebel sst (sw)
17        70.0    1.0             ford mustang boss 302
38        71.0    1.0                        ford pinto
39        71.0    2.0       volkswagen super beetle 117
133       74.0    1.0                     ford maverick
337       80.0    2.0              renault lecar deluxe
343       80.0    1.0                ford mustang cobra
361       81.0    2.0                       renault 18i
367       81.0    2.0                         saab 900s
382       82.0    1.0                    amc concord dl

`

推荐答案

您可以使用Apply和lambda来执行此操作:

missing_data_df['horsepower']= missing_data_df.apply(
    lambda row:
            0.25743277 * row.displacement + 0.00958711 * row.weight + 25.874947903262651
            if np.isnan(row.horsepower) else row.horsepower, axis=1)

这篇关于在Python中使用线性回归输入缺少的值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

05-15 22:48