本文介绍了在Python中使用线性回归输入缺少的值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试使用线性回归计算 pandas 数据帧中的缺失值
`
for index in [missing_data_df.horsepower.index]:
i = 0
if pd.isnull(missing_data_df.horsepower[index[i]]):
#linear regression equation
a = 0.25743277 * missing_data_df.displacement[index[i]] + 0.00958711 *
missing_data_df.weight[index[i]] + 25.874947903262651
# replacing "nan" values in dataframe using .set_value
missing_data_df.set_value(index[i],"horsepower",a)
i+=1
`
它正在执行。但是数据帧中的缺失值(NaN)没有被变量‘a’中的线性回归的预测值替换。有什么建议吗?
>>> missing_data_df:
mpg cylinders displacement horsepower weight acceleration
10 NaN 4.0 133.0 115.0 3090.0 17.5
11 NaN 8.0 350.0 165.0 4142.0 11.5
12 NaN 8.0 351.0 153.0 4034.0 11.0
13 NaN 8.0 383.0 175.0 4166.0 10.5
14 NaN 8.0 360.0 175.0 3850.0 11.0
17 NaN 8.0 302.0 140.0 3353.0 8.0
38 25.0 4.0 98.0 NaN 2046.0 19.0
39 NaN 4.0 97.0 48.0 1978.0 20.0
133 21.0 6.0 200.0 NaN 2875.0 17.0
337 40.9 4.0 85.0 NaN 1835.0 17.3
343 23.6 4.0 140.0 NaN 2905.0 14.3
361 34.5 4.0 100.0 NaN 2320.0 15.8
367 NaN 4.0 121.0 110.0 2800.0 15.4
382 23.0 4.0 151.0 NaN 3035.0 20.5
model_year origin car_name
10 70.0 2.0 citroen ds-21 pallas
11 70.0 1.0 chevrolet chevelle concours (sw)
12 70.0 1.0 ford torino (sw)
13 70.0 1.0 plymouth satellite (sw)
14 70.0 1.0 amc rebel sst (sw)
17 70.0 1.0 ford mustang boss 302
38 71.0 1.0 ford pinto
39 71.0 2.0 volkswagen super beetle 117
133 74.0 1.0 ford maverick
337 80.0 2.0 renault lecar deluxe
343 80.0 1.0 ford mustang cobra
361 81.0 2.0 renault 18i
367 81.0 2.0 saab 900s
382 82.0 1.0 amc concord dl
`
推荐答案
您可以使用Apply和lambda来执行此操作:
missing_data_df['horsepower']= missing_data_df.apply(
lambda row:
0.25743277 * row.displacement + 0.00958711 * row.weight + 25.874947903262651
if np.isnan(row.horsepower) else row.horsepower, axis=1)
这篇关于在Python中使用线性回归输入缺少的值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!