本文介绍了从上一次在Pandas DataFrame中发生以来,还剩下几天吗?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

假设我有一个Pandas DataFrame df:

Let's say I have a Pandas DataFrame df:

Date      Value
01/01/17  0
01/02/17  0
01/03/17  1
01/04/17  0
01/05/17  0
01/06/17  0
01/07/17  1
01/08/17  0
01/09/17  0

对于每一行,我想有效地计算自上次出现Value=1以来的天数.

For each row, I want to efficiently calculate the days since the last occurence of Value=1.

这样df:

Date      Value    Last_Occurence
01/01/17  0        NaN
01/02/17  0        NaN
01/03/17  1        0
01/04/17  0        1
01/05/17  0        2
01/06/17  0        3
01/07/17  1        0
01/08/17  0        1
01/09/17  0        2

我可以做一个循环:

for i in range(0, len(df)):
    last = np.where(df.loc[0:i,'Value']==1)
    df.loc[i, 'Last_Occurence'] = i-last

但是对于非常大的数据集来说似乎效率很低,而且可能也不对.

But it seems very inefficient for extremely large data sets and probably isn't right anyway.

推荐答案

这是NumPy的方法-

Here's a NumPy approach -

def intervaled_cumsum(a, trigger_val=1, start_val = 0, invalid_specifier=-1):
    out = np.ones(a.size,dtype=int)    
    idx = np.flatnonzero(a==trigger_val)
    if len(idx)==0:
        return np.full(a.size,invalid_specifier)
    else:
        out[idx[0]] = -idx[0] + 1
        out[0] = start_val
        out[idx[1:]] = idx[:-1] - idx[1:] + 1
        np.cumsum(out, out=out)
        out[:idx[0]] = invalid_specifier
        return out

很少有关于数组数据的示例来展示涉及触发器和起始值的各种场景的用法:

Few sample runs on array data to showcase the usage covering various scenarios of trigger and start values :

In [120]: a
Out[120]: array([0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0])

In [121]: p1 = intervaled_cumsum(a, trigger_val=1, start_val=0)
     ...: p2 = intervaled_cumsum(a, trigger_val=1, start_val=1)
     ...: p3 = intervaled_cumsum(a, trigger_val=0, start_val=0)
     ...: p4 = intervaled_cumsum(a, trigger_val=0, start_val=1)
     ...: 

In [122]: np.vstack(( a, p1, p2, p3, p4 ))
Out[122]: 
array([[ 0,  1,  1,  1,  0,  0,  1,  0,  0,  1,  1,  1,  1,  1,  0],
       [-1,  0,  0,  0,  1,  2,  0,  1,  2,  0,  0,  0,  0,  0,  1],
       [-1,  1,  1,  1,  2,  3,  1,  2,  3,  1,  1,  1,  1,  1,  2],
       [ 0,  1,  2,  3,  0,  0,  1,  0,  0,  1,  2,  3,  4,  5,  0],
       [ 1,  2,  3,  4,  1,  1,  2,  1,  1,  2,  3,  4,  5,  6,  1]])

使用它来解决我们的问题:

Using it to solve our case :

df['Last_Occurence'] = intervaled_cumsum(df.Value.values)

样本输出-

In [181]: df
Out[181]: 
       Date  Value  Last_Occurence
0  01/01/17      0              -1
1  01/02/17      0              -1
2  01/03/17      1               0
3  01/04/17      0               1
4  01/05/17      0               2
5  01/06/17      0               3
6  01/07/17      1               0
7  01/08/17      0               1
8  01/09/17      0               2

运行时测试

方法-

# @Scott Boston's soln
def pandas_groupby(df):
    mask = df.Value.cumsum().replace(0,False).astype(bool)
    return df.assign(Last_Occurance=df.groupby(df.Value.astype(bool).\
                                    cumsum()).cumcount().where(mask))

# Proposed in this post
def numpy_based(df):
    df['Last_Occurence'] = intervaled_cumsum(df.Value.values)

时间-

In [33]: df = pd.DataFrame((np.random.rand(10000000)>0.7).astype(int), columns=[['Value']])

In [34]: %timeit pandas_groupby(df)
1 loops, best of 3: 1.06 s per loop

In [35]: %timeit numpy_based(df)
10 loops, best of 3: 103 ms per loop

In [36]: df = pd.DataFrame((np.random.rand(100000000)>0.7).astype(int), columns=[['Value']])

In [37]: %timeit pandas_groupby(df)
1 loops, best of 3: 11.1 s per loop

In [38]: %timeit numpy_based(df)
1 loops, best of 3: 1.03 s per loop

这篇关于从上一次在Pandas DataFrame中发生以来,还剩下几天吗?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-29 22:57