问题描述
我是 Python 新手,我想改进我使用 VBA 制作的几个 excel 程序.像下面那个.我有一个机器日志,它由 2 列组成,平均 50,000 行,每组用空格分隔.示例:
我想把它转换成每组这个柱状.
我不需要第一列,我只需要要转换的第二列.我已经通过 Excel 中的 VBA 完成了它,但是转换 50,000 行需要 2-5 分钟.
我自学 Python 已经有一段时间了,我希望它能通过 Pandas 或 numpy 加快进程.
非常感谢.
输入数据:
df = pd.read_excel(sample.xlsx", header=None, names=[Operation", Data"])
>>>df运营数据0 NaN # 结束第一组 (idx2)7 <操作>NaN # 开始第二组 (idx1)8 NaN<时间戳>值</时间戳>9 NaN <Type>值</Type>10 NaN <名称>值</名称>11 NaN <Action>值</Action12 NaN <Data>值</Data>13 </操作>NaN # 结束第二组 (idx2)14 <操作>NaN # 开始第三组 (idx1)15 NaN<时间戳>值</时间戳>16 NaN <Type>值</Type>17 NaN<名称>值</名称>18 NaN <Action>value</Action19 </操作>NaN # 结束第 3 组 (idx2)
代码段内的评论.下面是此代码的单行版本:
data = []idx1 = df[df[操作"].eq(")].index # [0, 6, 13]idx2 = df[df["Operation"].eq("")].index # [7, 14, 19]对于 zip(idx1, idx2) 中的 i1, i2: # [(0, 7), (6, 14), (13, 19)]# 获取组内的值 [(1, 6), (7, 13), (14, 18)]df1 = df[数据"].loc[i1+1:i2-1].reset_index(drop=True)数据.附加(df1)# 连接所有操作,交换列和行 (.Transpose)out = pd.concat(data,axis=columns").T.reset_index(drop=True)# 一条线# out = pd.concat([df["Data"].loc[i1+1:i2-1].reset_index(drop=True)# for i1, i2 in zip(df[df["Operation"].eq("")].index)],#axis=列".T.reset_index(drop=True)
输出结果:
>>>出去0 1 2 3 40 <时间戳>值</时间戳><类型>值</类型><名称>值</名称><Action>value</Action<Data>value</Data>1 <时间戳>值</时间戳><类型>值</类型><名称>值</名称><Action>value</Action<Data>value</Data>2 <时间戳>值</时间戳><类型>值</类型><名称>值</名称><Action>值</Action NaNI'm new to python an I want to improve several excel programs I've made using VBA.Like the one below.I have a machine log which is consist of 2 Columns and average of 50,000 Rows, every group is separated by spaces.Sample:
and i want to transform it to this columnar per group.
I don't need the 1st column, what I only need is the 2nd columns to be transformed.I already made it thru VBA in excel but it took 2-5 mins to transform 50,000 rows.
I've been self learning python for a while and I hope it will speed up the process thru pandas or numpy.
Thanks a lot.
Input data:
df = pd.read_excel("sample.xlsx", header=None, names=["Operation", "Data"])
>>> df
Operation Data
0 <Operation> NaN # begin 1st group (idx1)
1 NaN <Timestamp>value</Timestamp>
2 NaN <Type>value</Type>
3 NaN <Name>value</Name>
4 NaN <Action>value</Action
5 NaN <Data>value</Data>
6 </Operation> NaN # end 1st group (idx2)
7 <Operation> NaN # begin 2nd group (idx1)
8 NaN <Timestamp>value</Timestamp>
9 NaN <Type>value</Type>
10 NaN <Name>value</Name>
11 NaN <Action>value</Action
12 NaN <Data>value</Data>
13 </Operation> NaN # end 2nd group (idx2)
14 <Operation> NaN # begin 3rd group (idx1)
15 NaN <Timestamp>value</Timestamp>
16 NaN <Type>value</Type>
17 NaN <Name>value</Name>
18 NaN <Action>value</Action
19 </Operation> NaN # end 3rd group (idx2)
Comments inside the snippet. Below a one-line version of this code:
data = []
idx1 = df[df["Operation"].eq("<Operation>")].index # [0, 6, 13]
idx2 = df[df["Operation"].eq("</Operation>")].index # [7, 14, 19]
for i1, i2 in zip(idx1, idx2): # [(0, 7), (6, 14), (13, 19)]
# Get values inside the group [(1, 6), (7, 13), (14, 18)]
df1 = df["Data"].loc[i1+1:i2-1].reset_index(drop=True)
data.append(df1)
# Concatenate all operations, swap columns and rows (.Transpose)
out = pd.concat(data, axis="columns").T.reset_index(drop=True)
# One line
# out = pd.concat([df["Data"].loc[i1+1:i2-1].reset_index(drop=True)
# for i1, i2 in zip(df[df["Operation"].eq("<Operation>")].index,
# df[df["Operation"].eq("</Operation>")].index)],
# axis="columns").T.reset_index(drop=True)
Output result:
>>> out
0 1 2 3 4
0 <Timestamp>value</Timestamp> <Type>value</Type> <Name>value</Name> <Action>value</Action <Data>value</Data>
1 <Timestamp>value</Timestamp> <Type>value</Type> <Name>value</Name> <Action>value</Action <Data>value</Data>
2 <Timestamp>value</Timestamp> <Type>value</Type> <Name>value</Name> <Action>value</Action NaN
这篇关于如何将用空白(Nan)数据分隔的行转置为 python/pandas 中的多列?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!