本文介绍了用 pandas 将多个时间序列行合并为一行的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在使用循环神经网络来消耗时间序列事件(点击流).我的数据需要格式化,以便每一行都包含ID的所有事件.我的数据是一键编码的,并且已经按ID对其进行了分组.另外,我限制了每个ID的事件总数(例如2),因此最终宽度始终是已知的(#one-hot cols x #events).我需要维护事件的顺序,因为它们是按时间排序的.

I am using a recurrent neural network to consume time-series events (click stream). My data needs to be formatted such that a each row contains all the events for an id. My data is one-hot encoded, and I have already grouped it by the id. Also I limit the total number of events per id (ex. 2), so final width will always be known (#one-hot cols x #events). I need to maintain the order of the events, because they are ordered by time.

当前数据状态:

     id   page.A   page.B   page.C      
0   001        0        1        0
1   001        1        0        0
2   002        0        0        1
3   002        1        0        0

所需的数据状态:

     id   page.A1   page.B1   page.C1   page.A2   page.B2   page.C2      
0   001        0         1         0         1         0         0
1   002        0         0         1         1         0         1

对我来说这似乎是一个pivot问题,但是我得到的数据帧不是我所需的格式.关于我应该如何处理此问题的任何建议?

This looks like a pivot problem to me, but my resulting dataframes are not in the format I need. Any suggestions on how I should approach this?

推荐答案

这里的想法是在每个'id'组中的reset_index来计数我们在该特定'id'中的哪一行.然后用unstacksort_index进行后续操作,以获取应该位于的列.

The idea here is to reset_index within each group of 'id' to get a count which row of that particular 'id' we are at. Then follow that up with unstack and sort_index to get columns where they are supposed to be.

最后,将多索引展平.

df1 = df.set_index('id').groupby(level=0) \
    .apply(lambda df: df.reset_index(drop=True)) \
    .unstack().sort_index(axis=1, level=1)  # Thx @jezrael for sort reminder

df1.columns = ['{}{}'.format(x[0], int(x[1]) + 1) for x in df1.columns]

df1

这篇关于用 pandas 将多个时间序列行合并为一行的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-16 02:37