本文介绍了计算流中的标准偏差的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

使用Python,假设我正在运行已知数量的项目I,并且能够计时处理每个t所需的时间,以及运行所花费的时间总计T和到目前为止已处理的项目数c.我目前正在计算运行中的平均值A = T / c,但是如果说单个项目花费的时间特别长(几秒钟而不是几毫秒),则可能会造成偏差.

Using Python, assume I'm running through a known quantity of items I, and have the ability to time how long it takes to process each one t, as well as a running total of time spent processing T and the number of items processed so far c. I'm currently calculating the average on the fly A = T / c but this can be skewed by say a single item taking an extraordinarily long time to process (a few seconds compared to a few milliseconds).

我想展示一个运行中的标准偏差.在不保存每个t记录的情况下该如何做?

I would like to show a running Standard Deviation. How can I do this without keeping a record of each t?

推荐答案

我使用,它可以提供更准确的结果.该链接指向 John D. Cook的概述.这是其中的一段,总结了为什么它是首选方法:

I use Welford's Method, which gives more accurate results. This link points to John D. Cook's overview. Here's a paragraph from it that summarizes why it is a preferred approach:

这篇关于计算流中的标准偏差的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-15 04:53
查看更多