问题描述
考虑到用于将图像分为两类的卷积神经网络,我们如何计算权重数量:
How can we compute number of weights considering a convolutional neural network that is used to classify images into two classes :
- 输入:100x100灰度图像.
- 第1层:具有60个7x7卷积滤波器的卷积层(步幅= 1,有效填充).
- 第2层:具有100个5x5卷积滤镜的卷积层(步幅= 1,有效填充).
- 第3层:最大池化层,将第2层降采样为4倍(例如,从500x500到250x250)
- 第4层:具有250个单位的致密层
- 第5层:200个单位的致密层
- 第6层:单个输出单元
假设每个层中都存在偏差.而且,池化层具有权重(类似于AlexNet)
Assume the existence of biases in each layer. Moreover, pooling layer has a weight (similar to AlexNet)
此网络有多少权重?
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Conv2D, MaxPooling2D
model = Sequential()
# Layer 1
model.add(Conv2D(60, (7, 7), input_shape = (100, 100, 1), padding="same", activation="relu"))
# Layer 2
model.add(Conv2D(100, (5, 5), padding="same", activation="relu"))
# Layer 3
model.add(MaxPooling2D(pool_size=(2, 2)))
# Layer 4
model.add(Dense(250))
# Layer 5
model.add(Dense(200))
model.summary()
推荐答案
TL; DR-用于TensorFlow + Keras
使用 Sequential.summary
-链接到文档.
用法示例:
from tensorflow.keras.models import *
model = Sequential([
# Your architecture here
]);
model.summary()
您的体系结构的输出为:
The output for your architecture is:
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 94, 94, 60) 3000
_________________________________________________________________
conv2d_1 (Conv2D) (None, 90, 90, 100) 150100
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 45, 45, 100) 0
_________________________________________________________________
flatten (Flatten) (None, 202500) 0
_________________________________________________________________
dense (Dense) (None, 250) 50625250
_________________________________________________________________
dense_1 (Dense) (None, 200) 50200
_________________________________________________________________
dense_2 (Dense) (None, 1) 201
=================================================================
Total params: 50,828,751
Trainable params: 50,828,751
Non-trainable params: 0
_________________________________________________________________
这是50,828,751个参数.
That's 50,828,751 parameters.
对于具有
-
num_filters
过滤器 - 过滤器大小为
filter_size * filter_size * num_channels
, - 以及每个过滤器的偏差参数
权数为:(num_filters * filter_size * filter_size * num_channels)+ num_filters
例如:您的神经网络中的第1层具有
E.g.: LAYER 1 in your neural network has
- 60个过滤器
- ,过滤器大小为7 * 7 *1.(请注意,通道数(1)来自输入图像.)
其中的权重数为:(60 * 7 * 7 * 1)+ 60
,即 3000
.
The number of weights in it is: (60 * 7 * 7 * 1) + 60
, which is 3000
.
对于具有的密集层
-
num_units
个神经元, 上一层中的 -
num_inputs
个神经元, - 以及每个神经元的偏差参数
权数为:(num_units * num_inputs)+ num_units
例如神经网络中的第5层具有
E.g. LAYER 5 in your neural network has
- 200个神经元
- 及其之前的层-层4-具有250个神经元.
其中的权重数为 200 * 250
,即 50200
.
这篇关于如何计算CNN的权数?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!