问题描述
我有以下数据框:
library(tidyverse)
df <- data_frame(
id = c(1, 1, 2, 2),
date1 = as.Date(c("2013-01-01", "2013-02-01", "2015-04-01", "2015-05-01")),
date2 = as.Date(c("2012-12-09", "2012-12-09", "2015-03-10", "2015-03-10"))
)
# A tibble: 4 x 3
id date1 date2
<dbl> <date> <date>
1 1 2013-01-01 2012-12-09
2 1 2013-02-01 2012-12-09
3 2 2015-04-01 2015-03-10
4 2 2015-05-01 2015-03-10
我想完成此数据这样,对于每个 id
,都会有另一个 date1
值。此另一个 date1
值将作为下个月计算。还有一个 date2
值,该值对于所有 id
都是相同的。使用 tidyr :: complete
可以执行以下操作:
And I want to complete this data frame such that for each id
, there will be another date1
value. This another date1
value is computed as the next month. Also there is a date2
value which is same for all id
's. With tidyr::complete
this action can be done like this:
df %>%
group_by(id) %>%
complete(date1 = seq.Date(from = min(date1), length.out = 3, by = "month"), date2 = date2[1])
# A tibble: 6 x 3
# Groups: id [2]
id date1 date2
<dbl> <date> <date>
1 1 2013-01-01 2012-12-09
2 1 2013-02-01 2012-12-09
3 1 2013-03-01 2012-12-09
4 2 2015-04-01 2015-03-10
5 2 2015-05-01 2015-03-10
6 2 2015-06-01 2015-03-10
由于我的原始数据中有大约15万个组,因此 tidyr
解决方案需要一个多小时才能完成。我假设使用 data.table
可以提高速度。可以在 data.table
中完成同样的事情吗?
Since I have about 150K groups in my original data, the tidyr
solution is taking more than hour to complete. I am assuming that speed would be gained using data.table
. Can the same thing be done in data.table
?
在,但没有 group_by
子句。
推荐答案
基于一些初始基准测试, data.table
方法似乎更快
Based on some initial benchmarking the data.table
approach seems to be faster
library(data.table)
setDT(df)[, .(date1 = seq(min(date1), length.out = 3, by = 'month'), date2 = date2[1]), id]
基准
Benchmarks
df <- data_frame(
id = rep(1:3000, each = 2),
date1 = rep(as.Date(c("2013-01-01", "2013-02-01", "2015-04-01", "2015-05-01")),
length.out = 6000),
date2 = rep(as.Date(c("2012-12-09", "2012-12-09", "2015-03-10", "2015-03-10")),
length.out = 6000))
system.time({
df %>%
group_by(id) %>%
complete(date1 = seq.Date(from = min(date1),
length.out = 3, by = "month"), date2 = date2[1])
})
#user system elapsed
#64.05 21.27 86.05
system.time({
setDT(df)[, .(date1 = seq(min(date1), length.out = 3, by = 'month'), date2 = date2[1]), id]
})
#user system elapsed
# 0.14 0.00 0.14
这篇关于相当于tidyr :: data的data.table,具有group_by的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!