本文介绍了如何在散点图中圈出不同的数据集?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
如何在散点图中圈出不同的数据集?
How do I encircle different data sets in scatter plot?
我正在寻找的是这样的:
What I'm looking for is something like this:
此外,此后我如何用(阴影)颜色填充圆圈?
Also, how do I thereafter fill in the circle with a (shaded) colour?
推荐答案
您可以通过凸包获得包含所有点的路径 scipy.spatial.ConvexHull
.
You may get the path that incoporates all points via a convex hull scipy.spatial.ConvexHull
.
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
from scipy.spatial import ConvexHull
x1, y1 = np.random.normal(loc=5, scale=2, size=(2,15))
x2, y2 = np.random.normal(loc=8, scale=2.5, size=(2,13))
plt.scatter(x1, y1)
plt.scatter(x2, y2)
def encircle(x,y, ax=None, **kw):
if not ax: ax=plt.gca()
p = np.c_[x,y]
hull = ConvexHull(p)
poly = plt.Polygon(p[hull.vertices,:], **kw)
ax.add_patch(poly)
encircle(x1, y1, ec="k", fc="gold", alpha=0.2)
encircle(x2, y2, ec="orange", fc="none")
plt.show()
另一种选择是围绕点云的平均值绘制一个圆圈.
Another option is to draw a circle around the mean of the point cloud.
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
from scipy.spatial import ConvexHull
x1, y1 = np.random.normal(loc=5, scale=2, size=(2,15))
x2, y2 = np.random.normal(loc=8, scale=2.5, size=(2,13))
plt.scatter(x1, y1)
plt.scatter(x2, y2)
def encircle2(x,y, ax=None, **kw):
if not ax: ax=plt.gca()
p = np.c_[x,y]
mean = np.mean(p, axis=0)
d = p-mean
r = np.max(np.sqrt(d[:,0]**2+d[:,1]**2 ))
circ = plt.Circle(mean, radius=1.05*r,**kw)
ax.add_patch(circ)
encircle2(x1, y1, ec="k", fc="gold", alpha=0.2)
encircle2(x2, y2, ec="orange", fc="none")
plt.gca().relim()
plt.gca().autoscale_view()
plt.show()
这篇关于如何在散点图中圈出不同的数据集?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!