本文介绍了如何以可移植的方式保持 Fortran MPI 程序的精度?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个 Fortran 程序,我在其中指定数值数据类型的 kind 以尝试保持最低级别的精度,而不管使用什么编译器来构建程序.例如:

I have a Fortran program where I specify the kind of the numeric data types in an attempt to retain a minimum level of precision, regardless of what compiler is used to build the program. For example:

integer, parameter :: rsp = selected_real_kind(4)
...
real(kind=rsp) :: real_var

问题是我使用 MPI 来并行化代码,我需要确保 MPI 通信指定具有相同精度的相同类型.我使用以下方法与我的程序中的方法保持一致:

The problem is that I have used MPI to parallelize the code and I need to make sure the MPI communications are specifying the same type with the same precision. I was using the following approach to stay consistent with the approach in my program:

call MPI_Type_create_f90_real(4,MPI_UNDEFINED,rsp_mpi,mpi_err)
...
call MPI_Send(real_var,1,rsp_mpi,dest,tag,MPI_COMM_WORLD,err)

但是,我发现这个 MPI 例程对于不同的 MPI 实现并没有特别好的支持,所以它实际上使我的程序不可移植.如果我省略了 MPI_Type_create 例程,那么我只能依赖标准的 MPI_REALMPI_DOUBLE_PRECISION 数据类型,但如果该类型是与 selected_real_kind 选择作为最终将由 MPI 传递的真实类型不一致?我是否只使用标准的 real 数据类型声明,没有 kind 属性,如果我这样做,我是否保证 MPI_REALreal 总是具有相同的精度,无论编译器和机器如何?

However, I have found that this MPI routine is not particularly well-supported for different MPI implementations, so it's actually making my program non-portable. If I omit the MPI_Type_create routine, then I'm left to rely on the standard MPI_REAL and MPI_DOUBLE_PRECISION data types, but what if that type is not consistent with what selected_real_kind picks as the real type that will ultimately be passed around by MPI? Am I stuck just using the standard real declaration for a datatype, with no kind attribute and, if I do that, am I guaranteed that MPI_REAL and real are always going to have the same precision, regardless of compiler and machine?

更新:

我创建了一个简单的程序来演示当我的内部实数具有比 MPI_DOUBLE_PRECISION 类型提供的精度更高时看到的问题:

I created a simple program that demonstrates the issue I see when my internal reals have higher precision than what is afforded by the MPI_DOUBLE_PRECISION type:

program main

   use mpi

   implicit none

   integer, parameter :: rsp = selected_real_kind(16)
   integer :: err
   integer :: rank

   real(rsp) :: real_var

   call MPI_Init(err)
   call MPI_Comm_rank(MPI_COMM_WORLD,rank,err)

   if (rank.eq.0) then
      real_var = 1.123456789012345
      call MPI_Send(real_var,1,MPI_DOUBLE_PRECISION,1,5,MPI_COMM_WORLD,err)
   else
      call MPI_Recv(real_var,1,MPI_DOUBLE_PRECISION,0,5,MPI_COMM_WORLD,&
         MPI_STATUS_IGNORE,err)
   end if

   print *, rank, real_var

   call MPI_Finalize(err)

end program main

如果我使用 2 个内核构建和运行,我会得到:

If I build and run with 2 cores, I get:

       0   1.12345683574676513672
       1   4.71241976735884452383E-3998

现在将 selected_real_kind 中的 16 更改为 15,我得到:

Now change the 16 to a 15 in selected_real_kind and I get:

       0   1.1234568357467651
       1   1.1234568357467651

无论使用什么机器/编译器进行构建,将 selected_real_kind(15)MPI_DOUBLE_PRECISION 一起使用是否总是安全的?

Is it always going to be safe to use selected_real_kind(15) with MPI_DOUBLE_PRECISION no matter what machine/compiler is used to do the build?

推荐答案

使用 Fortran 2008 内在 STORAGE_SIZE 确定每个数字所需的数字字节数并以字节形式发送.请注意,STORAGE_SIZE 以位为单位返回大小,因此您需要除以 8 才能获得以字节为单位的大小.

Use the Fortran 2008 intrinsic STORAGE_SIZE to determine the number bytes that each number requires and send as bytes. Note that STORAGE_SIZE returns the size in bits, so you will need to divide by 8 to get the size in bytes.

此解决方案适用于移动数据,但不能帮助您使用归约.为此,您必须实现用户定义的归约操作.如果这对您很重要,我会用详细信息更新我的答案.

This solution works for moving data but does not help you use reductions. For that you will have to implement a user-defined reduction operation. If that's important to you, I will update my answer with the details.

例如:

program main

   use mpi

   implicit none

   integer, parameter :: rsp = selected_real_kind(16)
   integer :: err
   integer :: rank

   real(rsp) :: real_var

   call MPI_Init(err)
   call MPI_Comm_rank(MPI_COMM_WORLD,rank,err)

   if (rank.eq.0) then
      real_var = 1.123456789012345
      call MPI_Send(real_var,storage_size(real_var)/8,MPI_BYTE,1,5,MPI_COMM_WORLD,err)
   else
      call MPI_Recv(real_var,storage_size(real_var)/8,MPI_BYTE,0,5,MPI_COMM_WORLD,&
         MPI_STATUS_IGNORE,err)
   end if

   print *, rank, real_var

   call MPI_Finalize(err)

end program main

我确认此更改解决了问题,我看到的输出是:

I confirmed that this change corrects the problem and the output I see is:

   0   1.12345683574676513672
   1   1.12345683574676513672

这篇关于如何以可移植的方式保持 Fortran MPI 程序的精度?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

05-29 09:29
查看更多