本文介绍了 pandas 按最接近的时间合并数据帧的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有两个数据帧(logs
和failures
),我想合并两个数据帧,以便在logs
中添加一列,该列的值与失败"中的最接近日期. /p>
生成logs
,failures
和所需的output
的代码如下:
import pandas as pd
logs=pd.DataFrame({'date-time':pd.Series(['23/10/2015 10:20:54','22/10/2015 09:51:32','21/10/2015 06:51:32','28/10/2015 16:59:32','25/10/2015 04:41:32','24/10/2015 11:50:11']),'var1':pd.Series([0,1,3,1,2,4])})
logs['date-time']=pd.to_datetime(logs['date-time'])
failures=pd.DataFrame({'date':pd.Series(['23/10/2015 00:00:00','22/10/2015 00:00:00','21/10/2015 00:00:00']),'failure':pd.Series([1,1,1])})
failures['date']=pd.to_datetime(failures['date'])
output=pd.DataFrame({'date-time':pd.Series(['23/10/2015 10:20:54','22/10/2015 09:51:32','21/10/2015 06:51:32','28/10/2015 16:59:32','25/10/2015 04:41:32','24/10/2015 11:50:11']),'var1':pd.Series([0,1,3,1,2,4]),'closest_failure':pd.Series(['23/10/2015 00:00:00','22/10/2015 00:00:00','21/10/2015 00:00:00','23/10/2015 00:00:00','23/10/2015 00:00:00','23/10/2015 00:00:00'])})
output['date-time']=pd.to_datetime(output['date-time'])
有什么想法吗?真实的数据集非常大,因此效率也是一个问题.
解决方案
您可以使用方法="nearest"重新编制索引.可能有一种更整洁的方法,但是将带有失败日志的系列与索引和值一起使用是可行的:
In [11]: failures_dt = pd.Series(failures["date"].values, failures["date"])
In [12]: failures_dt.reindex(logs["date-time"], method="nearest")
Out[12]:
date-time
2015-10-23 10:20:54 2015-10-23
2015-10-22 09:51:32 2015-10-22
2015-10-21 06:51:32 2015-10-21
2015-10-28 16:59:32 2015-10-23
2015-10-25 04:41:32 2015-10-23
2015-10-24 11:50:11 2015-10-23
dtype: datetime64[ns]
In [13]: logs["nearest"] = failures_dt.reindex(logs["date-time"], method="nearest").values
In [14]: logs
Out[14]:
date-time var1 nearest
0 2015-10-23 10:20:54 0 2015-10-23
1 2015-10-22 09:51:32 1 2015-10-22
2 2015-10-21 06:51:32 3 2015-10-21
3 2015-10-28 16:59:32 1 2015-10-23
4 2015-10-25 04:41:32 2 2015-10-23
5 2015-10-24 11:50:11 4 2015-10-23
I've got two dataframes (logs
and failures
), which I would like to merge so that I add in logs
a column which has the value of the closest date found in 'failures'.
The code to generate logs
, failures
, and the desired output
is below:
import pandas as pd
logs=pd.DataFrame({'date-time':pd.Series(['23/10/2015 10:20:54','22/10/2015 09:51:32','21/10/2015 06:51:32','28/10/2015 16:59:32','25/10/2015 04:41:32','24/10/2015 11:50:11']),'var1':pd.Series([0,1,3,1,2,4])})
logs['date-time']=pd.to_datetime(logs['date-time'])
failures=pd.DataFrame({'date':pd.Series(['23/10/2015 00:00:00','22/10/2015 00:00:00','21/10/2015 00:00:00']),'failure':pd.Series([1,1,1])})
failures['date']=pd.to_datetime(failures['date'])
output=pd.DataFrame({'date-time':pd.Series(['23/10/2015 10:20:54','22/10/2015 09:51:32','21/10/2015 06:51:32','28/10/2015 16:59:32','25/10/2015 04:41:32','24/10/2015 11:50:11']),'var1':pd.Series([0,1,3,1,2,4]),'closest_failure':pd.Series(['23/10/2015 00:00:00','22/10/2015 00:00:00','21/10/2015 00:00:00','23/10/2015 00:00:00','23/10/2015 00:00:00','23/10/2015 00:00:00'])})
output['date-time']=pd.to_datetime(output['date-time'])
Any ideas? The real dataset is very large, so efficiency is also a concern.
解决方案
You can reindex with method="nearest". There may be a neater way, but using a Series with the failure logs in the index and values works:
In [11]: failures_dt = pd.Series(failures["date"].values, failures["date"])
In [12]: failures_dt.reindex(logs["date-time"], method="nearest")
Out[12]:
date-time
2015-10-23 10:20:54 2015-10-23
2015-10-22 09:51:32 2015-10-22
2015-10-21 06:51:32 2015-10-21
2015-10-28 16:59:32 2015-10-23
2015-10-25 04:41:32 2015-10-23
2015-10-24 11:50:11 2015-10-23
dtype: datetime64[ns]
In [13]: logs["nearest"] = failures_dt.reindex(logs["date-time"], method="nearest").values
In [14]: logs
Out[14]:
date-time var1 nearest
0 2015-10-23 10:20:54 0 2015-10-23
1 2015-10-22 09:51:32 1 2015-10-22
2 2015-10-21 06:51:32 3 2015-10-21
3 2015-10-28 16:59:32 1 2015-10-23
4 2015-10-25 04:41:32 2 2015-10-23
5 2015-10-24 11:50:11 4 2015-10-23
这篇关于 pandas 按最接近的时间合并数据帧的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!