本文介绍了了解python xgboost cv的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我想使用xgboost cv函数为我的训练数据集找到最佳参数。我对api感到困惑。如何找到最佳参数?这类似于sklearn grid_search 交叉验证功能吗?如何找到确定 max_depth 参数([2,4,6])的哪个选项最佳?

I would like to use the xgboost cv function to find the best parameters for my training data set. I am confused by the api. How do I find the best parameter? Is this similar to the sklearn grid_search cross-validation function? How can I find which of the options for the max_depth parameter ([2,4,6]) was determined optimal?

from sklearn.datasets import load_iris
import xgboost as xgb
iris = load_iris()
DTrain = xgb.DMatrix(iris.data, iris.target)
x_parameters = {"max_depth":[2,4,6]}
xgb.cv(x_parameters, DTrain)
...
Out[6]: 
   test-rmse-mean  test-rmse-std  train-rmse-mean  train-rmse-std
0        0.888435       0.059403         0.888052        0.022942
1        0.854170       0.053118         0.851958        0.017982
2        0.837200       0.046986         0.833532        0.015613
3        0.829001       0.041960         0.824270        0.014501
4        0.825132       0.038176         0.819654        0.013975
5        0.823357       0.035454         0.817363        0.013722
6        0.822580       0.033540         0.816229        0.013598
7        0.822265       0.032209         0.815667        0.013538
8        0.822158       0.031287         0.815390        0.013508
9        0.822140       0.030647         0.815252        0.013494


推荐答案

对具有不同参数的模型进行评估,以找到这些参数的最佳组合。

Grid-search evaluates a model with varying parameters to find the best possible combination of these.

sklearn 讨论了很多有关CV的内容,它们可以组合使用,但是它们各自具有非常不同的功能

The sklearn docs talks a lot about CV, and they can be used in combination, but they each have very different purposes.

您也许可以将xgboost放入sklearn的gridsearch功能中。签出xgboost的sklearn界面,以实现最流畅的应用。

You might be able to fit xgboost into sklearn's gridsearch functionality. Check out the sklearn interface to xgboost for the most smooth application.

这篇关于了解python xgboost cv的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-21 07:26