问题描述
i=np.arange(1,4,dtype=np.int)
a=np.arange(9).reshape(3,3)
和
a
>>>array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
a[:,0:1]
>>>array([[0],
[3],
[6]])
a[:,0:2]
>>>array([[0, 1],
[3, 4],
[6, 7]])
a[:,0:3]
>>>array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
现在我想对数组进行矢量化以将它们全部打印出来.我试试
Now I want to vectorize the array to print them all together. I try
a[:,0:i]
或
a[:,0:i[:,None]]
它给出了类型错误:只有整数标量数组可以转换为标量索引
It gives TypeError: only integer scalar arrays can be converted to a scalar index
推荐答案
简答:
[a[:,:j] for j in i]
您要做的是不是可矢量化的操作.维基百科将矢量化定义为对单个数组的批处理操作,而不是对单个标量进行的操作:
What you are trying to do is not a vectorizable operation. Wikipedia defines vectorization as a batch operation on a single array, instead of on individual scalars:
在计算机科学中,数组编程语言(也称为向量或多维语言)将标量运算泛化为透明地应用于向量、矩阵和高维数组.
...
...对整个数组进行操作的操作可以称为向量化操作...
... an operation that operates on entire arrays can be called a vectorized operation...
在CPU级优化方面,矢量化的定义是:
In terms of CPU-level optimization, the definition of vectorization is:
向量化"(简化)是重写循环的过程,这样它不是处理数组的单个元素 N 次,而是同时处理(比如说)数组的 4 个元素 N/4 次.
你的情况的问题是每个单独操作的结果具有不同的形状:(3, 1)
, (3, 2)
和 (3, 3)
.它们不能形成单个向量化操作的输出,因为输出必须是一个连续的数组.当然,它内部可以包含 (3, 1)
, (3, 2)
和 (3, 3)
数组(如视图),但这就是您的原始数组 a
已经做到的.
The problem with your case is that the result of each individual operation has a different shape: (3, 1)
, (3, 2)
and (3, 3)
. They can not form the output of a single vectorized operation, because the output has to be one contiguous array. Of course, it can contain (3, 1)
, (3, 2)
and (3, 3)
arrays inside of it (as views), but that's what your original array a
already does.
您真正要寻找的只是一个计算所有这些的表达式:
What you're really looking for is just a single expression that computes all of them:
[a[:,:j] for j in i]
...但它在性能优化的意义上不是矢量化的.在引擎盖下,它是一个简单的旧 for
循环,它一个一个地计算每个项目.
... but it's not vectorized in a sense of performance optimization. Under the hood it's plain old for
loop that computes each item one by one.
这篇关于numpy 数组类型错误:只有整数标量数组可以转换为标量索引的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!