本文介绍了如何在spark数据帧/spark sql中读取带有模式的json的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

sql/dataframes,请帮助我或提供一些关于如何阅读此 json 的好建议

sql/dataframes,please help me out or provide some good suggestion on how to read this json

{
    "billdate":"2016-08-08',
    "accountid":"xxx"
    "accountdetails":{
        "total":"1.1"
        "category":[
        {
            "desc":"one",
            "currentinfo":{
            "value":"10"
        },
            "subcategory":[
            {
                "categoryDesc":"sub",
                "value":"10",
                "currentinfo":{
                    "value":"10"
                }
            }]
        }]
    }
}

谢谢,

推荐答案

似乎您的 json 无效.请检查 http://www.jsoneditoronline.org/

Seems like your json is not valid.pls check with http://www.jsoneditoronline.org/

请参阅an-introduction-to-json-support-in-spark-sql.html

如果你想注册为表,你可以像下面一样注册并打印模式.

if you want to register as the table you can register like below and print the schema.

DataFrame df = sqlContext.read().json("/path/to/validjsonfile").toDF();
    df.registerTempTable("df");
    df.printSchema();

以下是示例代码片段

DataFrame app = df.select("toplevel");
        app.registerTempTable("toplevel");
        app.printSchema();
        app.show();
DataFrame appName = app.select("toplevel.sublevel");
        appName.registerTempTable("sublevel");
        appName.printSchema();
        appName.show();

scala 示例:

{"name":"Michael", "cities":["palo alto", "menlo park"], "schools":[{"sname":"stanford", "year":2010}, {"sname":"berkeley", "year":2012}]}
{"name":"Andy", "cities":["santa cruz"], "schools":[{"sname":"ucsb", "year":2011}]}
{"name":"Justin", "cities":["portland"], "schools":[{"sname":"berkeley", "year":2014}]}

 val people = sqlContext.read.json("people.json")
people: org.apache.spark.sql.DataFrame

读取顶级字段

val names = people.select('name).collect()
names: Array[org.apache.spark.sql.Row] = Array([Michael], [Andy], [Justin])

 names.map(row => row.getString(0))
res88: Array[String] = Array(Michael, Andy, Justin)

使用 select() 方法指定顶级字段,使用 collect() 将其收集到一个 Array[Row] 中,使用 getString() 方法访问每行内的一列.

Use the select() method to specify the top-level field, collect() to collect it into an Array[Row], and the getString() method to access a column inside each Row.

每个人都有一个城市"数组.让我们展平这些数组并读出它们的所有元素.

each Person has an array of "cities". Let's flatten these arrays and read out all their elements.

val flattened = people.explode("cities", "city"){c: List[String] => c}
flattened: org.apache.spark.sql.DataFrame

val allCities = flattened.select('city).collect()
allCities: Array[org.apache.spark.sql.Row]

 allCities.map(row => row.getString(0))
res92: Array[String] = Array(palo alto, menlo park, santa cruz, portland)

explode() 方法将城市数组分解或展平为名为city"的新列.然后我们使用 select() 选择新列,使用 collect() 将其收集到一个 Array[Row] 中,并使用 getString() 访问每一行内的数据.

The explode() method explodes, or flattens, the cities array into a new column named "city". We then use select() to select the new column, collect() to collect it into an Array[Row], and getString() to access the data inside each Row.

读出学校"数据,这是一个嵌套的 JSON 对象数组.数组的每个元素都包含学校名称和年份:

read out the "schools" data, which is an array of nested JSON objects. Each element of the array holds the school name and year:

 val schools = people.select('schools).collect()
schools: Array[org.apache.spark.sql.Row]


val schoolsArr = schools.map(row => row.getSeq[org.apache.spark.sql.Row](0))
schoolsArr: Array[Seq[org.apache.spark.sql.Row]]

 schoolsArr.foreach(schools => {
    schools.map(row => print(row.getString(0), row.getLong(1)))
    print("\n")
 })
(stanford,2010)(berkeley,2012)
(ucsb,2011)
(berkeley,2014)

使用select()collect() 选择schools"数组并将其收集到Array[Row].现在,每个schools"数组都是 List[Row] 类型,所以我们用 getSeq[Row]() 方法读出它.最后,我们可以通过调用 getString() 获取学校名称和 getLong() 获取学年信息来读取每个学校的信息.

Use select() and collect() to select the "schools" array and collect it into an Array[Row]. Now, each "schools" array is of type List[Row], so we read it out with the getSeq[Row]() method. Finally, we can read the information for each individual school, by calling getString() for the school name and getLong() for the school year.

这篇关于如何在spark数据帧/spark sql中读取带有模式的json的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-29 13:16
查看更多