问题描述
我正在查看 spark.sql.DataFrame 文档.
有
def as(alias: String): DataFrame返回一个带有别名集的新 DataFrame.自从1.3.0
这个方法的目的是什么?它是如何使用的?可以举个例子吗?
我没有在网上找到任何关于这种方法的信息,而且文档也很不存在.我没有设法使用这种方法创建任何类型的别名.
Spark
它或多或少相当于 SQL 表别名:
SELECT *FROM table AS 别名;
示例用法改编自 PySpark alias
文档:
import org.apache.spark.sql.functions.colcase class Person(name: String, age: Int)val df = sqlContext.createDataFrame(Person("Alice", 2) :: Person("Bob", 5) :: Nil)val df_as1 = df.as("df1")val df_as2 = df.as("df2")val join_df = df_as1.join(df_as2, col("df1.name") === col("df2.name"), "inner")加入_df.select(col("df1.name"), col("df2.name"), col("df2.age")).show
输出:
+-----+-----+----+|姓名|姓名|年龄|+-----+-----+----+|爱丽丝|爱丽丝|2||鲍勃|鲍勃|5|+-----+-----+----+
同样的事情使用 SQL 查询:
df.registerTempTable("df")sqlContext.sql("""SELECT df1.name, df2.name, df2.age从 df AS df1 加入 df AS df2ON df1.name == df2.name""")
这个方法的目的是什么?
几乎避免了歧义的列引用.
Spark 1.6+
还有一个新的 as[U](implicit arg0: Encoder[U]): Dataset[U]
用于将 DataFrame
转换为 DataFrame
给定类型的 code>DataSet.例如:
df.as[人]
I am looking at spark.sql.DataFrame documentation.
There is
def as(alias: String): DataFrame
Returns a new DataFrame with an alias set.
Since
1.3.0
What is the purpose of this method? How is it used? Can there be an example?
I have not managed to find anything about this method online and the documentation is pretty non-existent. I have not managed to make any kind of alias using this method.
Spark <= 1.5
It is more or less equivalent to SQL table aliases:
SELECT *
FROM table AS alias;
Example usage adapted from PySpark alias
documentation:
import org.apache.spark.sql.functions.col
case class Person(name: String, age: Int)
val df = sqlContext.createDataFrame(
Person("Alice", 2) :: Person("Bob", 5) :: Nil)
val df_as1 = df.as("df1")
val df_as2 = df.as("df2")
val joined_df = df_as1.join(
df_as2, col("df1.name") === col("df2.name"), "inner")
joined_df.select(
col("df1.name"), col("df2.name"), col("df2.age")).show
Output:
+-----+-----+---+
| name| name|age|
+-----+-----+---+
|Alice|Alice| 2|
| Bob| Bob| 5|
+-----+-----+---+
Same thing using SQL query:
df.registerTempTable("df")
sqlContext.sql("""SELECT df1.name, df2.name, df2.age
FROM df AS df1 JOIN df AS df2
ON df1.name == df2.name""")
Pretty much avoiding ambiguous column references.
Spark 1.6+
There is also a new as[U](implicit arg0: Encoder[U]): Dataset[U]
which is used to convert a DataFrame
to a DataSet
of a given type. For example:
df.as[Person]
这篇关于spark DataFrame“as"的使用方法的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!