@

集成Flink

编程示例

本节通过一个简单Flink写入Hudi表的编程示例,后续可结合自身业务拓展,先创建一个Maven项目,这次就使用Java来编写Flink程序。

由于中央仓库没有scala2.12版本的资源,前面文章已经编译好相关jar,那这里就将hudi-flink1.15-bundle-0.12.1.jar手动安装到本地maven仓库

mvn install:install-file -DgroupId=org.apache.hudi -DartifactId=hudi-flink_2.12 -Dversion=0.12.1 -Dpackaging=jar -Dfile=./hudi-flink1.15-bundle-0.12.1.jar

Pom文件内容添加如下内容:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>

  <groupId>cn.itxs</groupId>
  <artifactId>hudi-flink-demo</artifactId>
  <version>1.0</version>

  <name>hudi-flink-demo</name>

  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <scala.version>2.12.10</scala.version>
    <scala.binary.version>2.12</scala.binary.version>
    <hoodie.version>0.12.1</hoodie.version>
    <hadoop.version>3.3.4</hadoop.version>
    <flink.version>1.15.1</flink.version>
    <slf4j.version>2.0.5</slf4j.version>
  </properties>
  <dependencies>
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-java</artifactId>
      <version>${flink.version}</version>
      <scope>provided</scope>
    </dependency>

    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-streaming-java</artifactId>
      <version>${flink.version}</version>
      <scope>provided</scope>
    </dependency>

    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-clients</artifactId>
      <version>${flink.version}</version>
      <scope>provided</scope>
    </dependency>

    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-runtime-web</artifactId>
      <version>${flink.version}</version>
      <scope>provided</scope>
    </dependency>

    <dependency>
      <groupId>org.slf4j</groupId>
      <artifactId>slf4j-api</artifactId>
      <version>${slf4j.version}</version>
    </dependency>

    <dependency>
      <groupId>org.slf4j</groupId>
      <artifactId>slf4j-log4j12</artifactId>
      <version>${slf4j.version}</version>
    </dependency>

    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-table-planner_${scala.binary.version}</artifactId>
      <version>${flink.version}</version>
      <scope>provided</scope>
    </dependency>

    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-statebackend-rocksdb</artifactId>
      <version>${flink.version}</version>
    </dependency>

    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-client</artifactId>
      <version>${hadoop.version}</version>
      <scope>provided</scope>
    </dependency>
    <dependency>
      <groupId>org.apache.hudi</groupId>
      <artifactId>hudi-flink_${scala.binary.version}</artifactId>
      <version>${hoodie.version}</version>
    </dependency>
  </dependencies>

  <build>
    <plugins>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-compiler-plugin</artifactId>
        <version>3.10.1</version>
        <configuration>
          <source>1.8</source>
          <target>1.8</target>
          <encoding>${project.build.sourceEncoding}</encoding>
        </configuration>
      </plugin>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-shade-plugin</artifactId>
        <version>3.4.1</version>
        <executions>
          <execution>
            <phase>package</phase>
            <goals>
              <goal>shade</goal>
            </goals>
            <configuration>
              <filters>
                <filter>
                  <artifact>*:*</artifact>
                  <excludes>
                    <exclude>META-INF/*.SF</exclude>
                    <exclude>META-INF/*.DSA</exclude>
                    <exclude>META-INF/*.RSA</exclude>
                  </excludes>
                </filter>
              </filters>
            </configuration>
          </execution>
        </executions>
      </plugin>
    </plugins>
  </build>
</project>

创建一个HudiDemo的Java文件实现一个简单写入hudi表流程

package cn.itxs;

import org.apache.flink.configuration.Configuration;
import org.apache.flink.contrib.streaming.state.EmbeddedRocksDBStateBackend;
import org.apache.flink.contrib.streaming.state.PredefinedOptions;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

import java.util.concurrent.TimeUnit;

public class HudiDemo
{
    public static void main( String[] args )
    {
        //StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 本地启动flink的web页面
        StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration());

        EmbeddedRocksDBStateBackend embeddedRocksDBStateBackend = new EmbeddedRocksDBStateBackend(true);
        embeddedRocksDBStateBackend.setDbStoragePath("file:///D:/rocksdb");
        embeddedRocksDBStateBackend.setPredefinedOptions(PredefinedOptions.SPINNING_DISK_OPTIMIZED_HIGH_MEM);
        env.setStateBackend(embeddedRocksDBStateBackend);

        env.enableCheckpointing(TimeUnit.SECONDS.toMillis(5), CheckpointingMode.EXACTLY_ONCE);
        CheckpointConfig checkpointConfig = env.getCheckpointConfig();
        checkpointConfig.setCheckpointStorage("hdfs://hadoop1:9000/checkpoints/flink");
        checkpointConfig.setMinPauseBetweenCheckpoints(TimeUnit.SECONDS.toMillis(2));
        checkpointConfig.setTolerableCheckpointFailureNumber(5);
        checkpointConfig.setCheckpointTimeout(TimeUnit.MINUTES.toMillis(1));
        checkpointConfig.setExternalizedCheckpointCleanup(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        tableEnv.executeSql("CREATE TABLE source_a2 (\n" +
                " uuid varchar(20),\n" +
                " name varchar(10),\n" +
                " age int,\n" +
                " ts timestamp(3),\n" +
                " `partition` varchar(20),\n" +
                " PRIMARY KEY(uuid) NOT ENFORCED\n" +
                " ) WITH (\n" +
                " 'connector' = 'datagen',\n" +
                " 'rows-per-second' = '1'\n" +
                ")"
        );

        tableEnv.executeSql("CREATE TABLE a2 (\n" +
                " uuid varchar(20),\n" +
                " name varchar(10),\n" +
                " age int,\n" +
                " ts timestamp(3),\n" +
                " `partition` varchar(20),\n" +
                "PRIMARY KEY(uuid) NOT ENFORCED\n" +
                " ) WITH (\n" +
                " 'connector' = 'hudi',\n" +
                " 'path' = 'hdfs://hadoop1:9000/tmp/hudi_flink/a2',\n" +
                " 'table.type' = 'MERGE_ON_READ'\n" +
                ")"
        );

        tableEnv.executeSql("insert into a2 select * from source_a2");

    }
}

通过使用createLocalEnvironmentWithWebUI开启动FlinkWebUI,也即是可以在本地上查看flink的web页面

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

本地rocksdb状态后端也有对应的存储数据

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

HDFS上也可以查看到刚刚创建的hudi表信息

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

打包运行

对上面小修改一下代码,将最前面的环境中注释createLocalEnvironmentWithWebUI和setDbStoragePath,放开getExecutionEnvironment;将表名改为a3,执行mvn package编译打包,将打包的文件上传

flink run -t yarn-per-job -c cn.itxs.HudiDemo /home/commons/flink-1.15.1/otherjars/hudi-flink-demo-1.0.jar

运行日志如下

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

查看Yarn的application_1669357770610_0019

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

查看HDFS也可以查看到刚刚创建的hudi表信息

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

CDC入湖

概述

CDC 即 Change Data Capture 变更数据捕获,可以通过 CDC 得知数据源表的更新内容(包含Insert Update 和 Delete),并将这些更新内容作为数据流发送到下游系统。捕获到的数据操作具有一个标识符,分别对应数据的增加,修改和删除。

  • +I:新增数据。
  • -U:一条数据的修改会产生两个U标识符数据。其中-U含义为修改前数据。
  • +U:修改之后的数据。
  • -D:删除的数据。

CDC数据保存了完整的数据库变更,可以通过以下任意一种方式将数据导入Hudi:

  • 对接CDC Format,消费Kafka数据的同时导入Hudi。支持debezium-json、canal-json和maxwell-json三种格式,该方式优点是可扩展性强,缺点是需要依赖Kafka和Debezium数据同步工具。
  • 通过Flink-CDC-Connector直接对接DB的Binlog,将数据导入Hudi。该方式优点是轻量化组件依赖少。

说明

  • 如果无法保证上游数据顺序,则需要指定write.precombine.field字段。
  • 在CDC场景下,需要开启changelog模式,即changelog.enabled设为true。

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

下面则演示上面第一种方式方式的使用

MySQL 启用 binlog

下面以 MySQL 5.7 版本为例说明。修改my.cnf文件,增加:

server_id=1
log_bin=mysql-bin
binlog_format=ROW
expire_logs_days=30

初始化MySQL 源数据表

先创建演示数据库 test和一张 student 表

create database test;
use test;
CREATE TABLE `student` (
	`id` INT NOT NULL AUTO_INCREMENT,
	`name` varchar(10) NOT NULL,
	`age` int NOT NULL,
	`class` varchar(10) DEFAULT NULL,
	PRIMARY KEY (`id`)
) ENGINE = InnoDB CHARSET = utf8;

准备Jar包依赖

将flink-sql-connector-mysql-cdc-2.3.0.jar和flink-sql-connector-kafka-1.15.1.jar上传到flink的lib目录下

flink-sql-connector-mysql-cdc-2.3.0.jar可以从github上下载 https://github.com/ververica/flink-cdc-connectors

flink-sql-connector-kafka-1.15.1.jar直接在maven仓库下

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

flink读取mysql binlog写入kafka

  • 创建mysql表
CREATE TABLE student_binlog (
 id INT NOT NULL,
 name STRING,
 age INT,
 class STRING,
 PRIMARY KEY (`id`) NOT ENFORCED
) WITH (
 'connector' = 'mysql-cdc',
 'hostname' = 'mysqlserver',
 'port' = '3308',
 'username' = 'root',
 'password' = '123456',
 'database-name' = 'test',
 'table-name' = 'student'
);
  • 创建kafka表
create table student_binlog_sink_kafka(
 id INT NOT NULL,
 name STRING,
 age INT,
 class STRING,
 PRIMARY KEY (`id`) NOT ENFORCED
) with (
  'connector'='upsert-kafka',
  'topic'='data_test',
  'properties.bootstrap.servers' = 'kafka1:9092',
  'properties.group.id' = 'testGroup',
  'key.format'='json',
  'value.format'='json'
);

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

  • 将mysql binlog日志写入kafka
insert into student_binlog_sink_kafka select * from student_binlog;

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

查看Flink的Web UI,可以看到刚才提交的job

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

开启tableau方式查询表

set 'sql-client.execution.result-mode' = 'tableau';select * from student_binlog_sink_kafka;

往mysql的student表插入和更新数据测试下

INSERT INTO student VALUES(1,'张三',16,'高一3班');
COMMIT;
INSERT INTO student VALUES(2,'李四',18,'高三3班');
COMMIT;
UPDATE student SET NAME='李四四' WHERE id = 2;
COMMIT;

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

flink读取kafka数据并写入hudi数据湖

  • 创建Kafka源表
CREATE TABLE student_binlog_source_kafka (
 id INT NOT NULL,
 name STRING,
 age INT,
 class STRING
)
WITH(
    'connector' = 'kafka',
    'topic'='data_test',
    'properties.bootstrap.servers' = 'kafka1:9092',
    'properties.group.id' = 'testGroup',
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'json'
);
  • 创建hudi目标表
CREATE TABLE student_binlog_sink_hudi (
 id INT NOT NULL,
 name STRING,
 age INT,
 class STRING,
 PRIMARY KEY (`id`) NOT ENFORCED
)
PARTITIONED BY (`class`)
WITH (
  'connector' = 'hudi',
  'path' = 'hdfs://hadoop1:9000/tmp/hudi_flink/student_binlog_sink_hudi',
  'table.type' = 'MERGE_ON_READ',
  'write.option' = 'insert',
  'write.precombine.field' = 'class'
);
  • 将kafka数据写入hudi表
insert into student_binlog_sink_hudi select * from student_binlog_source_kafka;

mysql中student表新增加2条数据

INSERT INTO student VALUES(3,'韩梅梅',16,'高二2班');
INSERT INTO student VALUES(4,'李雷',16,'高二2班');
COMMIT;

查看HDFS中已经有相应的分区和数据了

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

调优

Memory

Parallelism

Compaction

只适用于online compaction

集成Hive

hudi源表对应一份hdfs数据,可以通过spark,flink 组件或者hudi客户端将hudi表的数据映射为hive外部表,基于该外部表, hive可以方便的进行实时视图,读优化视图以及增量视图的查询。

集成步骤

这里以hive3.1.3(关于hive可以详细查看前面的文章)、 hudi 0.12.1为例, 其他版本类似

将hudi-hadoop-mr-bundle-0.9.0xxx.jar , hudi-hive-sync-bundle-0.9.0xx.jar 放到hiveserver 节点的lib目录下

cd /home/commons/apache-hive-3.1.3-bin
cp -rf /home/commons/hudi-release-0.12.1/packaging/hudi-hadoop-mr-bundle/target/hudi-hadoop-mr-bundle-0.12.1.jar lib/
cp -rf /home/commons/hudi-release-0.12.1/packaging/hudi-hive-sync-bundle/target/hudi-hive-sync-bundle-0.12.1.jar lib/

按照需求选择合适的方式并重启hive

nohup hive --service metastore &
nohup hive --service hiveserver2 &

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

连接jdbc hive2测试,显示所有数据库

大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-后续-LMLPHP

Flink同步Hive

Flink hive sync 现在支持两种 hive sync mode, 分别是 hms 和 jdbc 模式。 其中 hms 只需要配置 metastore uris;而 jdbc 模式需要同时配置 jdbc 属性 和 metastore uris,具体配置示例如下

CREATE TABLE t7(
  id int,
  num int,
  ts int,
  primary key (id) not enforced
)
PARTITIONED BY (num)
with(
  'connector'='hudi',
  'path' = 'hdfs://hadoop1:9000/tmp/hudi_flink/t7',
  'table.type'='COPY_ON_WRITE', 
  'hive_sync.enable'='true', 
  'hive_sync.table'='h7', 
  'hive_sync.db'='default', 
  'hive_sync.mode' = 'hms',
  'hive_sync.metastore.uris' = 'thrift://hadoop2:9083'
);
insert into t7 values(1,1,1);

Hive Catalog

Flink官网的找到对应文档版本找到connector-hive,下载flink-sql-connector-hive-3.1.2_2.12-1.15.1.jar,上传到flink的lib目录下,建表示例

CREATE CATALOG hive_catalog WITH (
    'type' = 'hive',
    'default-database' = 'default',
    'hive-conf-dir' = '/home/commons/apache-hive-3.1.3-bin/conf/'
);

use catalog hive_catalog;
CREATE TABLE t8(
  id int,
  num int,
  ts int,
  primary key (id) not enforced
)
PARTITIONED BY (num)
with(
  'connector'='hudi',
  'path' = 'hdfs://hadoop1:9000/tmp/hudi_flink/t8',
  'table.type'='COPY_ON_WRITE', 
  'hive_sync.enable'='true', 
  'hive_sync.table'='h8', 
  'hive_sync.db'='default', 
  'hive_sync.mode' = 'hms',
  'hive_sync.metastore.uris' = 'thrift://hadoop2:9083'
);

本人博客网站IT小神 www.itxiaoshen.com

12-03 10:53