1.2.怎么使用ReentrantLock
使用案例:并发安全访问共享资源
public class LockDemo {
public static void main(String[] args) {
// 简单模拟20人抢优惠
for(int i=0;i<20;i++){
new Thread(new ThreadDemo()).start();
}
}
}
// 前十位可以获取优惠,凭号码兑换优惠
class ThreadDemo implements Runnable{
private static Integer num = 10;
private static final ReentrantLock reentrantLock = new ReentrantLock();
@Override
public void run() {
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
// 获取锁
reentrantLock.lock();
try {
if(num<=0){
System.out.println("已被抢完,下次再来");
return;
}
System.out.println(Thread.currentThread().getName()+"用户抢到的号码:"+num--);
}finally {
// 释放锁
reentrantLock.unlock();
}
}
}
执行结果:
常用的一些方法
2.一些概念的理解
2.1.锁和同步队列的关系
前面讲述过:ReentrantLock类的方法都是交给内部类Sync类来实现的。
Sync和它的子类都实现了,为什么还要ReentrantLock类来套这么一层呢?这关系到锁的使用和实现的问题。
说白了,ReentrantLock(锁)类为了简化开发者的使用,具体实现交由其内部类自定义的同步器Sync去处理,而AQS则以模板的方式提供一系列有关锁的操作及部分可被子类Sync重写的模板方法。
2.2.公平锁与非公平锁概述
公平与非公平指的是获取锁的机制不同。
公平锁强调先来后到,表示线程获取锁的顺序是按照线程请求锁的时间早晚来决定,即同步队列记录线程先后顺序,队列的特性FIFO(先进先出);
非公平锁只要CAS设置同步状态成功,当前线程就会获取到锁,没获取成功的依然放在同步队列中按FIFO原则等待,等待下一次的CAS操作。
从源码上可以知道它们的主要区别是多一个判断:!hasQueuedPredecessors()
该判断表示:加入了同步队列中当前节点是否有前驱节点,即在同步队列中有没有比当前线程更早的线程在队列中等待了,而非公平锁是没有这个判断的。
// java.util.concurrent.locks.ReentrantLock.NonfairSync
// 非公平
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
// java.util.concurrent.locks.ReentrantLock.Sync
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
// java.util.concurrent.locks.ReentrantLock.FairSync
// 公平:比非公平多了一步判断 !hasQueuedPredecessors()
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
// 主要区别:!hasQueuedPredecessors()
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
附上获取锁时公平锁和非公平锁的源码区别图
结论二:
公平锁和非公平锁的主要区别是:!hasQueuedPredecessors()
,表示同步队列中当前节点是否有前驱节点,即在同步队列中有没有比当前线程更早的线程在队列中等待了,而非公平锁没有这个判断。
2.3.实现锁的可重入特性
前面在公平锁与非公平锁概述这点中,附上了对比两者的关键源码,其中可重入的源码是一样的👇
......
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
判断当前线程和当前拥有独占访问权限的线程对比,是同一个线程则可以重新进入同一把锁。处理逻辑是:对同步状态state加上acquires=1,然后返回true,返回true即获取锁成功。
AbstractOwnableSynchronizer类用于保存锁被独占的线程对象,AOS类只有以下两个方法:
所以每次在获取锁成功后会做这么一步:setExclusiveOwnerThread(current)
👇
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
ReentrantLock的内部类Sync继承AQS实现模板方法tryRelease(int)
实现锁的释放规则,源码如下👇方法参数releases=1。
先判断该线程是否为当前拥有独占访问权限的线程,再判断同步状态,如果状态不为0,则锁还没释放完,不执行 setExclusiveOwnerThread(null)
即不释放独占访问权限的线程。因为发生锁的重入时,同步状态state>1,所以锁释放时同步状态需要一层层出来,直到同步状态为0时,才会置空拥有独占访问权的线程。因此AQS的state状态表示锁的持有次数。
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
结论三:公平和非公平的可重入性都一样,并且同步状态state的作用如下
即同步状态state等于锁持有的次数。
2.4.CAS概述
CAS的全称是Compare And Swap,意思是比较并交换
,是一种特殊的处理器指令。
以方法compareAndSetState(int expect,int update)为例:
处理逻辑是:期望参数expect值跟内存中当前状态值比较,等于则原子性的修改state值为update参数值。
获取锁操作:compareAndSetState(0, 1),当同步状态state=0时,则修改同步状态state=1
compareAndSetState() 方法调用了Unsafe 类下的本地方法compareAndSwapInt(),该方法由JVM实现CAS一组汇编指令,指令的执行必须是连续的不可被中断的,不会造成所谓的数据不一致问题,但只能保证一个共享变量的原子性操作。
同步队列中还有很多CAS相关方法,比如:
compareAndSetWaitStatus(Node,int,int):等待状态的原子性修改
compareAndSetHead(Node):设置头节点的原子性操作
compareAndSetTail(Node, Node):从尾部插入新节点的原子性操作
compareAndSetNext(Node,Node,Node):设置下一个节点的原子性操作
除了同步队列中提供的CAS方法,在Java并发开发包中,还提供了一系列的CAS操作,我们可以使用其中的功能让并发编程变得更高效和更简洁。
java.util.concurrent.atomic
一个小型工具包,支持单个变量上的无锁线程安全编程。
比如:num++ 或num--,自增和自减这些操作是非原子性操作的,无法确保线程安全,为了提高性能不考虑使用锁(synchronized、Lock),可以使用AtomicInteger类的方法来完成自增、自减,其本质是CAS原子性操作。
AtomicInteger num = new AtomicInteger(10);
// 自增
System.out.println(num.getAndIncrement());
// 自减
System.out.println(num.getAndDecrement());
注意:只是在自增和自减的过程是原子性操作。
如下代码👇下面整块代码是非线程安全的,只是num.getAndDecrement()
自减时是原子性操作,也即是并发场景下num.get()无法确保获取到最新值。
private static AtomicInteger num = new AtomicInteger(10);
......
if(num.get()<=0){
System.out.println("已被抢完,下次再来");
return;
}
System.out.println("号码:"+num.getAndDecrement());
支持哪些数据类型呢?
3.抽象同步队列AQS
AbstractQueuedSynchronizer 抽象同步队列,它是个模板类提供了许多以锁相关的操作,常说的AQS指的就是它。AQS继承了AbstractOwnableSynchronizer
类,AOS用于保存线程对象,保存什么线程对象呢?保存锁被独占的线程对象。
抽象同步队列AQS除了实现序列化标记接口,并没有实现任何的同步接口,该类提供了许多同步状态获取和释放的方法给自定义同步器使用,如ReentrantLock的内部类Sync。抽象同步队列支持独占式或共享式的的获取同步状态,方便实现不同类型的自定义同步器。一般方法名带有Shared
的为共享式,比如,尝试以共享式的获取锁的方法int tryAcquireShared(int)
,而独占式获取锁方法为boolean tryAcquire(int)
。
AQS是抽象同步队列,其重点就是同步队列
及如何操作同步队列
。
3.1同步队列
双向同步队列,采用尾插法新增节点,从头部的下一个节点获取操作节点,节点自旋获取同步锁,实现FIFO(先进先出)原则。
理解节点中的属性值作用
因篇幅原因,关于抽象同步队列AQS、锁的获取过程、锁的释放过程、自旋锁、线程阻塞与释放、线程中断与阻塞关系等内容将在下一篇文章展开讲解。
👇图是新增节点的过程
更多优质文章,请关注WX公众号:Java全栈布道师